Debate sobre desonestidade – Agora, ao vivo, no Youtube.


Peter Singer, Paul Bloom e Dan Ariely irão discutir agora, ao vivo, suas pesquisas sobre desonestidade, moralidade e ética.

O que o Facebook diz sobre o seu relacionamento?


O time de análise de dados do Facebook fez uma série de 6 posts sobre o valentine’s day (dia dos namorados) nos Estados Unidos.

Recomendo fortemente a leitura de todos. O posts tratam dos seguintes temas:

  • O primeiro post trata de amor e religião e constata que há poucos casais de religiões diferentes, mesmo em países com alta diversidade religiosa.
  • O segundo post trata da diferença de idade entre casais. Na média, homens são mais de dois anos mais velhos do que suas  parceiras.
  • O terceiro post trata da duração dos relacionamentos. Um dos resultados: quanto mais tempo de relacionamento, menor a chance de o casal se separar.
  • O quarto post trata das “melhores” cidades para os solteiros (como são cidades dos EUA, provavelmente não interessará muito os leitores deste blog).
  • O quinto post trata da mudança de comportamento dos casais antes e depois do relacionamento. Esse é um dos mais bacanas. Para quem quiser ler algo em português, a Folha fez uma matéria. Vale reproduzir um gráfico, relacionando a quantidade de posts com palavras positivas e os dias antes/após o início do namoro:

1898250_10152219519288415_127545461_n

Os dados confirmam aquilo que você já percebia: casais recém formados postam sobre unicórnios vomitando arco-iris e o efeito pode durar muito, muito tempo (destaque para o gráfico feito com ggplot2).

  • Por fim, o último post trata do que acontece após o término do relacionamento. As interações, principalmente de apoio dos amigos, aumentam bastante.

O Facebook é, muito provavelmente, a organização com a maior base de dados sobre informações pessoais do mundo. O potencial disso é inimaginável. No final do ano passado, eles contrataram o professor da NYU Yann LeCun para liderar o departamento de inteligência articial da empresa – parece que ainda há muita coisa interessante por esperar.

Mais sobre análise de dados do Facebook neste blog, aqui (analise seus próprios dados) e aqui (descubra características  da pessoa – como a orientação sexual – com base no que ela curte).

Estatísticas de homicídio – mais sobre erro de medida.


Qual foi a quantidade de homicídios no EUA em 2010? Três medidas diferentes, com 25% de diferença entre a maior e menor.

12,966, FBI, Crime in the United States 2010.

13,164, FBI, Crime in the United States 2011 (2010 figure).

14,720, Bureau of Justice Statistics (Table 1, based on FBI, Supplementary Homicide Statistics).

16,259, CDC (based on death certificates in the National Vital Statistics System). 

Veja mais no Marginal Revolution.

Para saber mais sobre o assunto, veja no blog também  aqui aqui ,aquiaqui, aqui e aqui.

 

Complexity Explorer


Além da análise de redes, outro tema correlato e que tende a render bons frutos na economia é o da análise de sistemas complexos.

Espero tratar mais deste assunto futuramente, mas, antes, não poderia deixar de passar uma dica para quem deseja iniciar os estudos na área: o site Complexity Explorer.

O curso Introduction to Complexity está para terminar agora em Janeiro e o Introduction to Dynamical Systems and Chaos acabou de começar.

Análise de redes e Moviegalaxies: seu filmes preferidos de uma forma que você nunca viu


Um campo de estudos que pode render muitos frutos na economia é o de análise de redes. Para quem tem curiosidade, há um curso bem interessante de análise de redes sociais no Coursera.

Mas, na verdade, o objetivo deste post é o de divulgar um site bem bacana, Moviegalaxies, que faz análise de rede com os personagens de filmes (você inclusive pode baixar os dados para o Gephi).

Um dos gráficos de que gostei é a o da rede de  “O Poderoso Chefão: parte II”:

The Godfather Part II

Nova base de dados de séries de tempo


Há pouco tempo surgiu uma nova base de dados de série de tempos - Quandl.

Além de agrupar diversas estatísticas de fontes diferentes, o site permite baixar os dados em vários formatos (como excel ou csv) e ainda permite importação de dados diretamente em várias ferramentas de análise, como R e Python. Isso é uma mão na roda em muitos casos.

Outra possibilidade no Quandl é a de incorporar gráficos diretamente nos posts, tal como o exemplo abaixo com a evolução do IPCA acumulado em 12 meses.

Graph of IPCA - Acumulado em 12 meses

Apesar da ressalva de ser uma fonte secundária de informações, para quem ainda não conhecia, certamente vale a pena conferir.

Em que países os brasileiros investem?


No post anterior vimos quais países tem investimento direto no Brasil (pelo critério de país de origem imediata).

Agora, que tal visualisarmos em que países os brasileiros investem?

Para tanto, podemos pegar os dados da pesquisa de Capitais Brasileiros no Exterior. Tal qual criança quando ganha um brinquedo novo, vamos lá brincar no R mais uma vez. Abaixo, mapa com a distribuição do Investimento Brasileiro Direto (IBD), participação no capital, conforme país de destino imediato, em 2012.

IBD_pais

PS: encontrei o pdf do Applied Spatial Data Analysis with R,  então esperem mais posts deste tipo.

Livros em promoção (Kindle): Big Data e Manual de sobrevivência na universidade


Três livros sobre Big Data, da O’Reilly, estão gratuitos na versão Kindle:

- Disruptive Possibilities: How Big Data Changes Everything;

- Big Data Now: 2012 Edition;

- Real-Time Big Data Analytics: Emerging Architecture.

Obviamente, ainda não tive tempo de ler, mas mesmo assim não poderia deixar de divulgar e já baixei para conferir.

E o livro do Leo Monastério, Manual de sobrevivência na universidade: da graduação ao pós-doutorado, também se encontra, por tempo limitado, gratuito na versão Kindle!

Erro de medida, Precificação de ativos e Prêmio Nobel


Entrevista com Larry Cahoon, estatístico do Censo norte-americano. Destaco a passagem abaixo, em que ele ressalta a importância de se saber sobre a variabilidade de uma estimativa, algo tão ou mais crítico do que saber a própria estimativa. Isto está em linha com o que discutimos acerca da acurácia das variáveis econômicas, aqui, aqui e aqui.

To do good statistics, knowledge of the subject matter it is being applied to is critical. I also learned early on that issues of variance and bias in any estimate are actually more important than the estimate itself. If I don’t know things like the variability inherent in an estimate and the bias issues in that estimate, then I really don’t know very much.

A favorite saying among the statisticians at the Census Bureau where I worked is that the biases are almost always greater than the sampling error. So my first goal is always to understand the data source, the data quality and what it actually measures.

But, I also still have to make decisions based on the data I have. The real question then becomes given the estimate on hand, what I know about the variance of that estimate, and the biases in that estimate, what decision am I going to make.

Se você não tinha seguido a recomendação de acompanhar o blog do Damodaran, seguem alguns posts interessantes que você perdeu:

- Chill, dude: Debt Default  Drama Queens

- When the pieces add-up too much: Micro Dreams and Macro Delusions;

- Twitter announces the IPO: Pricing Games Begins, The Valuation, Why a good trade be a bad investment (or vice-versa).

Sobre o prêmio Nobel, saiu tanta coisa na internet que inclusive descobri muitos detalhes interessantes dos trabalhos dos três ganhadores que sequer imaginava. Deixo aqui, para quem ainda não leu, os materiais do Marginal Revolution e do Cochrane.