O que o Facebook diz sobre o seu relacionamento?


O time de análise de dados do Facebook fez uma série de 6 posts sobre o valentine’s day (dia dos namorados) nos Estados Unidos.

Recomendo fortemente a leitura de todos. O posts tratam dos seguintes temas:

  • O primeiro post trata de amor e religião e constata que há poucos casais de religiões diferentes, mesmo em países com alta diversidade religiosa.
  • O segundo post trata da diferença de idade entre casais. Na média, homens são mais de dois anos mais velhos do que suas  parceiras.
  • O terceiro post trata da duração dos relacionamentos. Um dos resultados: quanto mais tempo de relacionamento, menor a chance de o casal se separar.
  • O quarto post trata das “melhores” cidades para os solteiros (como são cidades dos EUA, provavelmente não interessará muito os leitores deste blog).
  • O quinto post trata da mudança de comportamento dos casais antes e depois do relacionamento. Esse é um dos mais bacanas. Para quem quiser ler algo em português, a Folha fez uma matéria. Vale reproduzir um gráfico, relacionando a quantidade de posts com palavras positivas e os dias antes/após o início do namoro:

1898250_10152219519288415_127545461_n

Os dados confirmam aquilo que você já percebia: casais recém formados postam sobre unicórnios vomitando arco-iris e o efeito pode durar muito, muito tempo (destaque para o gráfico feito com ggplot2).

  • Por fim, o último post trata do que acontece após o término do relacionamento. As interações, principalmente de apoio dos amigos, aumentam bastante.

O Facebook é, muito provavelmente, a organização com a maior base de dados sobre informações pessoais do mundo. O potencial disso é inimaginável. No final do ano passado, eles contrataram o professor da NYU Yann LeCun para liderar o departamento de inteligência articial da empresa – parece que ainda há muita coisa interessante por esperar.

Mais sobre análise de dados do Facebook neste blog, aqui (analise seus próprios dados) e aqui (descubra características  da pessoa – como a orientação sexual – com base no que ela curte).

Analisando microdados do IBGE com o R


Os materiais do Seminário de Metodologia do IBGE de 2013 estão disponíveis para download. Dentre eles, destaco o do mini-curso Introdução à análise de dados amostrais complexos. Lá você vai aprender a replicar os resultados da POF, da PNAD e amostra do Censo levando em conta o desenho amostral das pesquisas (que é necessário para se calcular corretamente medidas de precisão, como a variância). O material é bastante focado no blog de Anthony Damico, Analyze Survey Data for Free. O blog é fantástico, com diversos exemplos de como baixar e analisar dados de pesquisas públicas levando em conta o plano amostral, tudo com ferramentas gratuitas como o R.

Você é obeso… mas não é gordo 2! Ou, mais sobre p-valores.


Já falamos que os p-valores não podem ser interpretados como uma medida absoluta de evidência, como comumente costumam ser. Entre algumas interpretações recorrentes, por exemplo, vale mencionar alguns cuidados:

  • se para um certo conjunto de dados, uma hipótese A (e uma estatística calculada sob A) gera um p-valor de 1% e outra hipótese B (e uma estatística calculada sob B) gera um p-valor de 10%, isto não necessariamente quer dizer que os dados trazem mais evidência contra A do que contra B. Até porque rejeitar A pode implicar, logicamente, na rejeição de B.
  • se para um certo conjunto de dados, uma hipótese A (e uma estatística calculada sob A) gera um p-valor menor que 5%, isto não necessariamente é evidência contra A.
  • se um estudo sobre a hipótese A resulta em p-valor menor do que 5% e outro estudo gera um p-valor maior do que 5%, isto não necessariamente quer dizer que os estudos apresentam resultados contraditórios.

Dentre outras questões.

Mas o que essas coisas querem realmente dizer? Muitas vezes é difícil entender o conceito sem exemplos (e gráficos) e é isso que pretendemos trazer hoje aqui. Vamos tratar do primeiro ponto listado, uma questão que, muitas vezes, pode confundir o usuário do p-valor: o p-valor pode apresentar evidências de que alguém seja obeso e, ao mesmo tempo, evidências de que este alguém não seja gordo, caso você, por descuido, tome o p-valor como uma medida absoluta de evidência e leve suas hipóteses nulas ao pé da letra. O exemplo abaixo foi retirado do artigo do Alexandre Patriota (versão publicada aqui).

Considere duas amostras aleatórias, com 100 observações cada, de distribuição normal com médias desconhecidas e variância igual 1.  Suponha que as médias amostrais calculadas nas duas amostras tenham sido x1=0.14 e x2=-0.16 e que você queira testar a hipótese nula de que ambas as médias populacionais sejam iguais a zero.

A estatística para esta hipótese é n*(x1^2+x2^2), e o valor obtido na amostra é  100*(0.14^2+(-0.16)^2)=4.52. A distribuição desta estatística, sob a hipótese nula, é uma qui-quadrado com 2 graus de liberdade, o que te dá um p-valor de 10%. Assim, se você segue o padrão da literatura aplicada, como o p-valor é maior do que 5%, você dirá que aceita (ou que não rejeita) a hipótese nula de que as médias sejam iguais a zero.

Agora suponha que outro pesquisador teste, com os mesmos dados, a hipótese de que as médias populacionas sejam iguais a si. Para esta hipótese, a estatística seria (n/2)*(x1 – x2)^2, e o valor obtido na amostra é  (100/2)*(0.14+0.16)^2= 4.5. A distribuição desta estatística sob a hipótese nula é uma qui-quadrado com 1 grau de liberdade, o que te dá um p-valor de 3%.  Caso o pesquisador siga o padrão da literatura aplicada, como o p-valor é menor do que 5% (o tão esperado *), ele dirá que rejeita a hipótese de que as médias sejam iguais.

Mas, espere um momento. Ao concluir que as médias não são iguais, logicamente  também se deve concluir que ambas não sejam iguais a zero! Com os mesmos dados, se forem testadas hipóteses diferentes, e se os resultados forem interpretados conforme faz a maior parte da literatura aplicada (que é uma interpretação bastante frágil), você chegará a conclusões aparentemente contraditórias!

Como o p-valor traz “mais evidência” contra a hipótese  de que as médias seja iguais do que contra a hipótese de que ambas sejam iguais a zero, tendo em vista que se rejeitarmos a primeira, logicamente temos que rejeitar a segunda? O que está acontecendo?

Para entender melhor, lembremos o que é o p-valor. O p-valor calcula a probabilidade de a estatística de teste ser tão grande, ou maior, do que a estatística de teste observada. Intuitivamente, o p-valor tenta responder a seguinte pergunta:  se eu adotasse esta discrepância observada como evidência suficiente para rejeitar a hipótese nula, quantas vezes este teste me levaria a erroneamente rejeitar esta hipótese quando ela é de fato verdadeira. Isto é, o p-valor leva em consideração em seu cálculo todos aqueles resultados amostrais que gerariam estatísticas tão extremas quanto a observada, que poderiam ter ocorrido mas não ocorreram.

Repare como calculamos a estatística 1 e note o termo (x1^2+x2^2). Percebe-se que a estatística se torna mais extrema cada vez que o ponto (x1, x2) se distancia de (0,0) – em qualquer direção. Isto é, ela cresce com relação à distância euclidiana de (x1,x2) em relação ao ponto (0,0). Talvez isso seja mais fácil de entender com imagens. No gráfico abaixo, quanto mais escura a cor, maior é o valor da estatística de teste.

dist_eucl_cont

Já na estatística 2, perceba que o termo principal é (x1 – x2)^2, e o que se mede é a distância do ponto em relação à curva x1=x2. Isto é, a distância absoluta de x1 em relação a x2. Vejamos as curvas de nível. Note que ao longo da curva há diversas regiões em branco, mesmo quando distantes do ponto (0,0), pois o que a estatística mede é a distância entre os pontos x1 e x2 entre si.

dist_abs_cont

Agora deve ficar mais fácil de entender o que está acontecendo. O p-valor calcula a probabilidade de encontrar uma estatística tão grande ou maior do que a observada. Ao calcular (x1 – x2)^2, todos os pontos que são distantes de (0,0), mas são próximos entre si, não geram estatísticas extremas. Como uma imagem vale mais do que mil palavras, façamos mais uma. No gráfico abaixo,  os pontos pretos são todos aqueles cuja estatística de teste supera a estatística observada (0.14, -0.16). Já os pontos azuis e vermelhos são todos os pontos que tem uma estatística de teste maior do que a observada, medidos pela distância euclidiana em relação à reta x1=x2.

contraste-p-valorNote que vários pontos pretos que se encontram “longe” de (0,0) não são nem vermelhos nem azuis, pois estão “pertos” da reta x1=x2. Fica claro, portanto, porque o p-valor da segunda estatística é menor. Isso ocorre porque resultados extremos que discordariam bastante de (0,0) – como (0.2, 0.2) ou (0.3, 0.3) – não são considerados em seu cálculo. Note que é possível obter um p-valor ainda menor (1,6%) testanto a hipóse de que média 1 seja menor ou igual à média 2. E se a média 1 não é menor ou igual a média 2, isso implica que elas não são iguais a si, e que também não são ambas iguais a zero. É importante ter claro também que todas as estatísticas são derivadas pelo mesmo método – razão de verossimilhanças – e possuem propriedades ótimas, não são estatísticas geradas ad-hoc para provocar um resultado contra-intutivo.

Para não alongar muito este post, frise-se que o que deve ser tirado como lição principal é que o p-valor não é uma medida absoluta de suporte à hipótese que está sendo testada. Mas como interpretar melhor os resultados acima? Caso você queira continuar no âmbito frequentista, algumas medidas seriam, por exemplo, não considerar literalmente as hipóteses nulas (isto é, não rejeitar ou aceitar uma hipótese precisa como x1=x2 ou x1=x2=0), avaliar que discrepâncias em relação à hipótese nula são ou não relevantes (do ponto de vista científico, e não estatístico) e conferir a função poder e intervalos de confiança para algumas alternativas de interesse.  Trataremos disso mais a frente (caso vocês ainda não tenham enjoado do assunto!).

Bicicletas aumentam em 30% a permanência de meninas na escola, na Índia.


Foi o que encontraram os pesquisadores Karthik Muralidharan e Nishith Prakash. A bicicleta afeta principalmente as meninas que vivem entre 5 a 10 Km da escola. Isto mostra: (i) como pequenas distâncias, isto é, pequenos custos, podem ter efeito substancial em algo tão importante no longo prazo como a educação; mas, também, que (ii) esses obstáculos podem ser, muitas vezes, resolvidos com medidas bastante simples.

Veja, abaixo, o vídeo dos pesquisadores:

Via Mankiw.

Solucionando crimes com matemática e estatística


Enquanto Breaking Bad não volta, comecei a assistir ao seriado Numb3rs, cujo enredo trata do uso da matemática e da estatística na solução de crimes. Confesso que, a princípio, estava receoso. Na maior parte das vezes, filmes e seriados que tratam desses temas costumam, ou mistificar a matemática, ou conter erros crassos.

Todavia, o primeiro episódio da série abordou uma equação para tentar identificar a provável residência de um criminoso, sendo que: (i) os diálogos dos personagens e as explicações faziam sentido; e, algo mais surpreendente, (ii) as equações de background, apesar de não explicadas, pareciam fazer sentido. Desconfiei. Será que era baseado em um caso real?

E era. Bastou pesquisar um pouco no Google para encontrar a história do policial que virou criminologista, Kim Rossmo, em que o episódio foi baseado. E inclusive, encontrar também um livro para leigos, de leitura agradável, que aborda alguns dos temas de matemática por trás do seriado: The Numbers behind Numb3rs.

A primeira equação que Rossmo criou tinha a seguinte cara:

rossmo

A intuição por trás da equação pode ser resumida desta forma: o criminoso não gosta de cometer crimes perto da própria residência, pois isso tornaria muito fácil sua identificação; assim, dentro de uma certa zona B, a probabilidade de o criminoso residir em um certo local é menor quanto mais próximo este estiver do crime (esse é o segundo termo da equação). Entretanto, a partir de certo ponto, começa a ser custoso ao criminoso ir mais longe para cometer o crime – assim, a partir dali, a situação se inverte, e locais longe do crime passam a ser menos prováveis (esse é o primeiro termo da equação). Em outras palavras, você tenta calcular a probabilidade de um criminoso morar na coordenada (Xi , Xj), com base na distância desta com as demais coordenadas dos crimes (xn, yn), levando em conta o fato de a residência estar ou não em B. Os parâmetros da equação são estimados de modo a otimizar o modelo com base nos dados de casos passados.

Por mais simples que seja, a equação funcionou muito bem e Kim Rossmo prosseguiu com seus estudos em criminologia. Evidentemente que, como em qualquer modelo, há casos em que a equação falha miseravelmente, como em situações em que os criminosos mudam de residência o tempo inteiro – mas isso não é um problema da equação em si, pois o trabalho de quem a utiliza é justamente identificar se a situação é, ou não, adequada para tanto. Acho que este exemplo ilustra muito bem como sacadas simples e bem aplicadas podem ser muito poderosas!

PS: O tema me interessou bastante e o livro de Rossmo, Geographic Profiling, entrou para a (crescente) wishlist da Amazon.

Déficits causam câncer


Reinhart e Rogoff perderam muito tempo com os argumentos errados. Vejam o gráfico:

deficit_e_cancer

Brincadeiras à parte, gostei da carta dos autores a Krugman e do post do Hamilton.

Já DeLong argumenta que, se os autores dizem que a idéia geral do artigo não se altera radicalmente por causa dos erros, por outro lado, isso não muda o fato de o argumento ter sido fraco desde o princípio (não que eu concorde com DeLong, mas o ponto é mais do que pertinente):

The third thing to note is how small the correlation is. Suppose that we consider a multiplier of 1.5 and a marginal tax share of 1/3. Suppose the growth-depressing effect lasts for 10 years. Suppose that all of the correlation is causation running from high debt to slower future growth. And suppose that we boost government spending by 2% of GDP this year in the first case. Output this year then goes up by 3% of GDP. Debt goes up by 1% of GDP taking account of higher tax collections. This higher debt then reduces growth by… wait for it… 0.006% points per year. After 10 years GDP is lower than it would otherwise have been by 0.06%. 3% higher GDP this year and slower growth that leads to GDP lower by 0.06% in a decade. And this is supposed to be an argument against expansionary fiscal policy right now?….

Gráfico retirado de Os números (não) mentem.

Sobre a acurácia das variáveis econômicas III


Em posts anteriores falamos sobre a qualidade dos dados macroeconômicos e que dados oficiais são estimativas (ver aqui e aqui). Mas, qual o sentido prático disto? Vejamos com um exemplo.

Na conta de importação de serviços do balanço de pagamentos do México, fretes e seguros respondem por US$ 9,8 bilhões, cerca de 33% dos US$ 29 bilhões que totalizam a rubrica – trata-se de seu componente mais relevante. Como o México estima esse valor?

Antes de entrar no caso do México, tratemos brevemente dos meios de estimação mais comuns de fretes e seguros entre os países. O primeiro método é por meio dos valores declarados na aduana. Quando esta tem um campo de fretes e seguros discriminados em algum documento administrativo, é possível ao compilador utilizar estes valores para a estimação. Um segundo método é utilizar alguma proporção das importações ou exportações. Muitas vezes, a aduana do país registra apenas o valor CIF das importações, isto é, o valor com os custos de fretes e seguros incluídos. Deste modo, o compilador realiza uma pesquisa a cada 5 ou 10 anos, por exemplo, para estimar qual é a proporção do valor importado que corresponde a fretes e seguros.

É possível que você tenha pensado: “o primeiro método, com os dados da aduana, não deveria ser considerado uma estimativa, é o valor real!”. Mas não é. Voltemos ao México.

O México é um país que poderia se enquadrar no primeiro caso – sua aduana registra valores de fretes e seguros. Contudo, os pagamentos de fretes e seguros relatados em uma operação da aduana correspondem à importação de uma ampla gama de produtos, de diferentes naturezas e de vários países, tudo consolidado em um único documento. A regulamentação aduaneira tem suas próprias peculiaridades, não necessariamente relacionadas às informações que desejariam os compiladores da estatística. Ao fim, os dados da aduana lhes pareciam muito imprecisos, subestimados e demasiadamente agregados.

Com isto em mente, o Banxico buscou metodologia alternativa. Sua intenção era calcular o valor ao custo real de mercado e, assim, buscou preços no país vizinho, os Estados Unidos, que publicam, mensalmente, dados de custo médio dos fretes e seguros de importação por tipo de produto, país de origem e meio de transporte. Entretanto, o custo médio varia bastante por volume importado, e é preciso realizar este ajuste. Assim, roda-se uma regressão deste custo médio contra dummies dos portos dos EUA (pois cada porto pode ter um custo diferente) e volume importado (em log), para encontrar o coeficiente de ajuste entre volume e custo médio, chamado aqui de beta. Com o custo médio, o beta para ajuste e o volume das importações mexicanas em mãos , é possível estimar os custos de fretes e seguros do país. Atualizam-se o beta anualmente e o preço médio mensalmente sendo possível, deste modo, obter estimativas por produto, país e meio de transporte, que variam conforme condições de mercado, algo que não seria factível com os dados administrativos da aduana.

Mas, qual a diferença deste valor com o anterior, da aduana? O novo método estima custos cerca de duas vezes maiores e isso pareceu mais alinhado à realidade de mercado do que os dados anteriormente declarados. É uma diferença bem significativa.

Portanto, é importante atentar-se para dois detalhes: (i) dados que, a primeira vista, poderiam ser considerados “os valores reais” (dados de questionários, formulários administrativos, etc), podem ter problemas e estar tão sujeitos a erros quanto outros procedimentos; (ii) muitos componentes dos dados macroeconômicos que você utiliza, tal como a conta de fretes e seguros do exemplo acima, são derivados de um processo de estimação prévia. No nosso exemplo, seja o dado administrativo, ou o dado derivado pela outra metodologia, fica claro que ambos têm que ser vistos como estimativas, cada método com suas vantagens e limitações, sendo preciso entendê-las para saber o que aquele dado pode ou não pode te responder. 

Sobre a acurácia das variáveis econômicas II


Em post anterior tratamos da importância de se conhecer bem as variáveis com que se trabalha. Muitas vezes o economista utiliza dados que, por sua dificuldade de mensuração, são estimados por terceiros (IBGE, Banco Central, Tesouro Nacional etc). Assim, há uma tendência a se saber muito pouco sobre como esses dados são produzidos na prática e, sem entender quais suas limitações e quais seus pontos fortes, se esquece de tratá-los devidamente como estimativas.

Neste sentido, gostei muito de ver que outros blogs tem compartilhado desta mesma preocupação.

Dave Giles, por exemplo, resume algumas verdades importantes sobre dados oficiais, que são comumente esquecidas:

  • Dados são revisados o tempo inteiro: o número que saiu ontem do PIB pode mudar drasticamente amanhã.
  • Dados somem: eu já enfrentei isso com uma série de horas de trabalho que estava disponível no IPEA Data e que, alguns meses depois, simplesmente foi descontinuada e excluída.
  • As definições e metodologia mudam: por exemplo, a metodologia do Censo de Capitais Estrangeiros no País mudou recentemente. O usuário tem que ter isto em mente e não pode simplesmente comparar um dado com outro sem ajustes.
  • Os dados oficiais são estimativas: sobre isso tratamos no post anterior!

Dave Giles também recomendou alguns papers sobre o assunto e tratou de um interessante relatório sobre a qualidade dos dados chineses, aspecto fundamental para quem analisa aquela economia.

Já Mark Thoma começou a se dar conta do problema ao ler a notícia de que o IBGE americano está incorporando novos aspectos às contas nacionais que, simplesmente, podem “reescrever a história econômica”. Você já parou para se perguntar quantos “fatos estilizados” que conhecemos, como, por exemplo, a semi-estagnação de algumas economias desenvolvidas, podem (ou não) ser fruto da adoção de uma ou outra metodologia? Em posts futuros trarei exemplos interessantes de dados oficiais que são estimativas, mas agora queria tratar sobre aspectos que norteiam a discussão sobre a qualidade dos dados.

Sobre este quesito, o FMI tem um site inteiramente dedicado ao assunto: o Data Quality Reference Site. Trata-se de um louvável esforço para promover a agenda de pesquisa sobre a qualidade dos dados (macro)econômicos. O Fundo criou um interessante marco para a avaliação da qualidade – em um aspecto ainda qualitativo e não quantitativo – dividido em 6 dimensões:

0 - Condições Prévias: busca verificar alguns aspectos institucionais para a produção do dado, como o entorno jurídico e a quantidade de recursos disponível;

1 – Garantias de Integridade: avalia aspectos como o profissionalismo, a transparência e as normas éticas da produção;

2 – Rigor Metodológico: inspeciona se os conceitos e definições adotados estão conformes ao padrão internacional, se o alcance da pesquisa é suficiente, se as categorizações são adequadas;

3 – Acurácia e Confiança: verificam a adequação das fontes de dados utilizadas, se há um processo de avaliação, validação e revisão dos dados, se as técnicas estatísticas são sólidas;

4 – Utilidade para o Usuário: trata de questões de periodicidade, pontualidade, consistência e revisão;

5 – Acesso: aborda questões de acesso aos dado, acesso aos metadados (isso é, aos dados sobre como os dados foram produzidos) e assistência aos usuários.

O ideal seria termos, também, uma noção quantitativa do erro, mas este esforço já é um grande passo. Você pode encontrar o detalhamento destes pontos para contas nacionais, contas externas, finanças públicas, índices de preço, entre outros, em seu respectivo Data Quality Assessment Framework.

Você, que já trabalhou ou pretende trabalhar com dados em painel, comparando diversos países, já teve a curiosidade de se perguntar sobre a diferente qualidade dos dados que está misturando?

Para alguns países, é possível fazer isso analisando o seu Report on the Observance of Standards and Codes (mais conhecido como ROSC) sobre dados. Tomando o caso do Chile como exemplo, que possui um ROSC para dados no ano de 2007, seria possível descobrir que havia sérios problemas no escopo da pesquisa de índices de preços, e que havia propostas para solucionar a questão em dezembro de 2008. Perceba que, para quem trabalha com dados de preços chilenos antes de 2007, esta é uma informação fundamental!

P-valor não é probabilidade a posteriori II


Na época da “descoberta” do Boson de Higgs, quase todo jornal confundiu. Inclusive, é comum ver essa confusão nas salas de aula. Andrew Gelman aponta para mais uma confusão na mídia, desta vez no New York Times:

Bakalar afirma que o p-valor é desenhado para

quantificar a probabilidade de o resultado de um experimento não ser fruto do acaso.

Isso é errado.

Vale lembrar o que o p-valor calcula: supondo que o resultado do experimento tenha sido fruto do acaso, qual seria a probabilidade de observarmos um resultado tão extremo ou mais extremo do que de fato foi observado.

 

 

Como organizar dados de corte transversal?


Aparentemente esta pergunta não faria sentido. Afinal, por definição, se o dado é de corte-transversal, a ordem não interferiria na análise. A rigor, não importaria quem é o 1º dado, quem é o 2º dado, e assim por diante.

Todavia, nenhum dado é literalmente – stricto sensu – de corte transversal. Na verdade, o que define se o dado é uma “série temporal” ou “corte-transversal” não é sua natureza intrínseca, mas como ele foi ordenado. Na maioria dos casos, é impossível observar todos os indivíduos no mesmo período de tempo e o que de fato fazemos é julgar que a diferença temporal (ou espacial) entre uma coleta e outra é praticamente irrelevante para análise que queremos fazer. Só que às vezes essa ordem pode revelar informações (ou vieses) interessantes.

Recentemente, trabalhando com dados que seriam de corte transversal, parei para pensar na ordem que estavam dispostos. Eles estavam organizados aleatoriamente pelo sistema. Mas eu poderia recuperar as informações de preenchimento. E se eu organizasse os dados pela ordem de entrega do questionário? Ou pela ordem de início preenchimento? Será que valeria à pena esse esforço e seriam reveladas diferenças de correlação ou heterogeneidade uma vez que esse caráter “temporal” do dado fosse explicitado? Ainda não fiz este exercício e não tenho a resposta.

Mas, ao pensar nisso, lembrei na hora de um exemplo do livro texto do Aris Spanos, que gostaria de compartilhar. Ele utiliza dados de notas de alunos em uma prova, que não sei se são anedóticos ou reais*, mas que ilustram bem o ponto.

Os dados organizados por ordem alfabética tem o seguinte gráfico:

ordem_alfabetica

Pelo gráfico, os dados não parecem apresentar auto-correlação. Estimativas de um AR(1) e AR(2) apresentam coeficientes pequenos com coeficiente de variação grande. Isso juntamente à nossa crença a priori de que a ordem alfabética não deveria interferir nas notas, nos faz concluir que provavelmente não existe dependência nos dados.

Já a organização pela ordem dos assentos resulta no seguinte gráfico:

posicao_sentado

Esta figura, diferentemente da anterior, apresenta dependência nos dados. As notas parecem estar correlacionadas positivamente. O coeficiente de um AR(1) é bastante alto e sugere que notas altas estavam próximas de notas altas e, notas baixas, de notas baixas. A ordem dos dados, neste caso, pode ter revelado algo fundamental: para Spanos, por exemplo, isso é evidência de que houve muita cola durante a prova! Eu já diria que esta conclusão é precipitada. Outro fato que poderia explicar a correlação é o de que alunos com afinidades (e, consequentemente, notas parecidas) podem gostar de sentar juntos.

Mas a lição é clara: dados que tomamos como certo serem de “corte transversal” podem apresentar uma interessante dependência entre si quando observados com mais cuidado.

* o Spanos tem uns exemplos com dados curiosos. Neste post ele utiliza uma variável secreta X, que se sabe não ser correlacionada com a população dos EUA, para prever a população dos EUA. Ele mostra como uma regressão ingênua pode ter resultados espúrios, indicando, erroneamente, que a variável X explica a população. A variável X, supostamente, seria o número de sapatos que a vó de Spanos tinha em cada ano, desde 1955. Surge daí uma pergunta natural, feita por Corey:

“…how is it that Spanos has annual data on the number of pairs of shoes owned by his grandmother going back to 1955?”

Ao que Spanos responde.

“That’s easy! My grandmother would never throw away any shoes and each pair had a different story behind it; the stories I grew up with. Each pair was bought at a specific annual fair and it was dated.”

Como o cara é de Cyprus, sei lá, pode ser que essa resposta seja culturalmente plausível. Mas para um brasileiro é no mínimo estranha; eu prefiro acreditar que os dados sejam inventados do que acreditar que ele resolveu contabilizar o número de sapatos da avó em cada ano. Com relação aos dados das notas, uma possível pista de que talvez Spanos tenha inventado os dados é a de que, primeiro, ele diz que as notas são da matéria “Principles of Economics”. Depois, de que são da matéria “Macro-Economic Principles”. Mas, sejam os dados reais, ou fictícios, os exemplos continuam válidos!