Entrevisa com Tal Galili – criador do R bloggers.


Seguindo a sequência de vídeos relacionados ao useR! 2014, Eduardo agora entrevista Tal Galili, o criador do R Bloggers, o agregador de blogs sobre R que facilita a vida de muita gente.

Se você usa ou quer começar a usar o R e ainda não adicionou o R Bloggers no seu Feedly, não deixe de fazer isso hoje.

Previsões para a copa: afinal, como se saíram os modelos?


Depois do 7 x 1 da Alemanha contra o Brasil, houve algum rebuliço na mídia. Nate Silver se explicou: não é que a derrota do Brasil fosse algo imprevisível, afinal, estimou-se em 35% as chances de a Alemanha vencer a partida. Mais de uma em cada três vezes. Entretanto, o placar de 7 a 1 foi, de fato, estimado como muito improvável segundo o modelo – apenas 0.025%. Mas será que isso por si só é suficiente para rejeitarmos seus resultados? Não necessariamente. Lembre que modelos são falsos. Você não quer saber se eles representam fielmente a realidade, mas sim se são úteis. A dificuldade está em, justamente, saber onde esses modelos podem ser úteis, e onde podem ser enganosos.

Modelar resultados raros e extremos é muito complicado.  Isso ilustra um ponto importante: não se exponha negativamente a Black Swans, pois a dificuldade (ou impossibilidade) de identificar tais eventos pode te expor a riscos muito maiores do que o que você imagina.  Nassim Taleb é alguém que bate há algum tempo nesta tecla.

Todavia, o interessante neste caso é que os modelos para a copa, por preverem vitória ou derrota, não estavam negativamente expostos a eventos extremos deste tipo (o diferencial de gols). Suponha que a probabilidade estimada para o resultado de 7 a 1 para a alemanha fosse de 0.25% ao invés de 0.025%, ou seja, 10 vezes maior. Isso em quase nada alteraria a probabilidade de um time ou outro vencer. Em outras palavras,  se você estiver apostando no resultado binário (vitória ou derrota), você não está exposto a um Black Swan deste tipo (poderia estar exposto a outros tipos, mas isso não vem ao caso agora).

Para ilustrar, comparemos uma distribuição normal (cauda bem comportada) com uma distribuição t de student com 2 graus de liberdade (cauda pesada). No gráfico abaixo temos a Normal em vermelho e a t de student em azul.  Note que a probabilidade de X ser maior do que zero é praticamente 50% nas duas distribuições. Entretanto, a probabilidade de X ser maior do que 3.3 é mais de 80 vezes maior na distribuição t do que na Normal. Na verdade, a simulação da t resulta em pontos bastante extremos, como -100 ou 50 (resultados “impossíveis” numa normal(0,1)), e por isso o eixo X ficou tão grande. Isto é, para prever o resultado binário X>0 ou X<0, não há muita diferença nos dois modelos, a despeito de haver enormes diferenças em eventos mais extremos.

Normal x T

 

Dito isto, não é de se surpreender que, apesar de Nate Silver ter colocado o Brasil como favorito – e ter errado de maneira acachapante o resultado contra a Alemanha – ainda assim suas previsões (atualizadas) terminaram a copa com o menor erro quadrático médio. Ou, também, com o menor erro logarítmico. Essas são medidas próprias de escore para previsões probabilísticas.

O gráfico final do erro quadrático ficou da seguinte forma. Não coloco o logarítmico por ser praticamente igual:

modelos_final

E segue também o gráfico final comparando as probabilidade observadas com as previstas:

calibracao_final

 

 

As ruas coloridas do Brasil – Brazil’s Painted Streets !


Momento Urban Demographics no Análise Real.

O Google lançou uma página,  Brazil’s Painted Streets, em que você pode passear pelas ruas decoradas para a copa no Brasil:

google_streets

E também tem um vídeo no YouTube:

Bem bacana.

Mas, como contraponto, vale colocar as pinturas contra a copa elencadas no The Guardian:

the_guardian

Nate Silver – Previsões para a copa do mundo


Nate Silver lançou suas previsões para a copa do mundo: Brasil sai como favorito, com 45% chances de ganhar.
20140609-213015-77415484.jpg
O que você acha das previsões? Quer entender como chegaram a esses números? Leia, aqui, a discussão que Nate faz sobre o modelo!

Nicolas Cage e as editoras do Harvard Law Review


As feministas que buscam mais mulheres como editoras de top journals têm que lutar por mais filmes com Nicolas Cage!  Ou será que este applicativo para Google Chrome resolveria? – transforma todas as imagens da sua internet em Nicolas Cages.

number-of-films-niclas-cage-appeared-in_female-editors-on-harvard-law-review

 

O problema com a solução é que há um trade-off: mais filmes com Nicolas Cage aumentarão o número de afogamentos em piscinas.

number-people-who-drowned-by-falling-into-a-swimming-pool_number-of-films-niclas-cage-appeared-in

PS: As correlações acima foram geradas pelo genial site Spurious Correlations. Agora não falta material para ensinar correlação espúria.

Via Marginal Revolution.