Mapa de Imóveis de Vitória – Venda


Seguindo a retomada da análise dos dados de webscraping de  imóveis, resolvi colocar no ar também as informações de venda de apartamentos em Vitória – ES.

A oferta online fica em torno de apenas mil anúncios diários, sendo que muitos são anúncios duplicados com bairros diferentes, mas próximos (por exemplo, Barro Vermelho e Praia do Canto). Isto torna a limpeza dos dados um pouco mais difícil.

A oferta concentra-se em Jardim Camburi, Praia do Canto, Jardim da Penha e Mata da Praia. Algo que chama a atenção é a grande diferença do preço por metro quadrado de bairros tão próximos. Segue, abaixo, tabela com as medianas do Preço, Preço por M2, somente M2 e quantidade ofertada.

tableVix

Clique na imagem abaixo para acessar o mapa com a possível geolocalização dos anúncios. Lembrando que isto é um protótipo, pois este não é objetivo principal destes dados.

Se o mapa não aparecer na sua tela, provavelmente o seu navegador bloqueou a execução do javaScript. Procure por um cadeado ou escudo no navegador (canto superior direito ou esquerdo, geralmente) e autorize o carregamento do site.
vix

Previsões para a copa: afinal, como se saíram os modelos?


Depois do 7 x 1 da Alemanha contra o Brasil, houve algum rebuliço na mídia. Nate Silver se explicou: não é que a derrota do Brasil fosse algo imprevisível, afinal, estimou-se em 35% as chances de a Alemanha vencer a partida. Mais de uma em cada três vezes. Entretanto, o placar de 7 a 1 foi, de fato, estimado como muito improvável segundo o modelo – apenas 0.025%. Mas será que isso por si só é suficiente para rejeitarmos seus resultados? Não necessariamente. Lembre que modelos são falsos. Você não quer saber se eles representam fielmente a realidade, mas sim se são úteis. A dificuldade está em, justamente, saber onde esses modelos podem ser úteis, e onde podem ser enganosos.

Modelar resultados raros e extremos é muito complicado.  Isso ilustra um ponto importante: não se exponha negativamente a Black Swans, pois a dificuldade (ou impossibilidade) de identificar tais eventos pode te expor a riscos muito maiores do que o que você imagina.  Nassim Taleb é alguém que bate há algum tempo nesta tecla.

Todavia, o interessante neste caso é que os modelos para a copa, por preverem vitória ou derrota, não estavam negativamente expostos a eventos extremos deste tipo (o diferencial de gols). Suponha que a probabilidade estimada para o resultado de 7 a 1 para a alemanha fosse de 0.25% ao invés de 0.025%, ou seja, 10 vezes maior. Isso em quase nada alteraria a probabilidade de um time ou outro vencer. Em outras palavras,  se você estiver apostando no resultado binário (vitória ou derrota), você não está exposto a um Black Swan deste tipo (poderia estar exposto a outros tipos, mas isso não vem ao caso agora).

Para ilustrar, comparemos uma distribuição normal (cauda bem comportada) com uma distribuição t de student com 2 graus de liberdade (cauda pesada). No gráfico abaixo temos a Normal em vermelho e a t de student em azul.  Note que a probabilidade de X ser maior do que zero é praticamente 50% nas duas distribuições. Entretanto, a probabilidade de X ser maior do que 3.3 é mais de 80 vezes maior na distribuição t do que na Normal. Na verdade, a simulação da t resulta em pontos bastante extremos, como -100 ou 50 (resultados “impossíveis” numa normal(0,1)), e por isso o eixo X ficou tão grande. Isto é, para prever o resultado binário X>0 ou X<0, não há muita diferença nos dois modelos, a despeito de haver enormes diferenças em eventos mais extremos.

Normal x T

 

Dito isto, não é de se surpreender que, apesar de Nate Silver ter colocado o Brasil como favorito – e ter errado de maneira acachapante o resultado contra a Alemanha – ainda assim suas previsões (atualizadas) terminaram a copa com o menor erro quadrático médio. Ou, também, com o menor erro logarítmico. Essas são medidas próprias de escore para previsões probabilísticas.

O gráfico final do erro quadrático ficou da seguinte forma. Não coloco o logarítmico por ser praticamente igual:

modelos_final

E segue também o gráfico final comparando as probabilidade observadas com as previstas:

calibracao_final

 

 

Futebol e teorias econômicas


Os jogadores batem pênalti como previsto pela teoria dos jogos? Os mercados de apostas no futebol são eficientes?  Confira o  artigo de Ignacio Palacios-Huerta no NYT e veja como o futebol pode ter interseção com temas da teoria econômica.

Via Al Roth.

Debate sobre desonestidade – Agora, ao vivo, no Youtube.


Peter Singer, Paul Bloom e Dan Ariely irão discutir agora, ao vivo, suas pesquisas sobre desonestidade, moralidade e ética.

Mapa de aluguel em Brasília (Plano Piloto)


Em post anterior fizemos uma breve análise dos dados de aluguel no plano piloto.

Agora, que tal navegar por todos imóveis em um mapa da cidade, vendo a localização, tamanho, número de quartos e valor do aluguel? Clique aqui ou na mapa abaixo para navegar.

Atenção,  ainda é um protótipo!

Se o mapa não aparecer na sua tela, provavelmente o seu navegador bloqueou a execução do javaScript. Procure por um cadeado no navegador (canto superior direito ou esquerdo, geralmente) e autorize o carregamento do site.

Captura de Tela 2014-02-23 às 21.13.59

PS: agora já estamos coletando diariamente e automaticamente preços online de imóveis dos principais sites e das principais capitais do país. Ainda estamos testando métodos de análise e visualização.