Benford Analysis R Package


Em post anterior falamos sobre a Lei de Benford e que ela pode ser utilizada para o auxílio na detecção de fraudes contábeis ou dados estranhos. Também explicamos por que ela surge - resumidamente, pode-se dizer que números que tenham crescimento exponencial, ou que sejam derivados da multiplicação de outros números, tenderiam à lei de Benford – e isto abrange muitos dados econômicos.

Além da Lei de Benford, temos falado bastante sobre o R por aqui. Então, que tal unirmos as duas coisas? Bem, em alguns dias, com o pacote benford.analysis, você poderá analisar facilmente e rapidamente (espero!) seus dados contra a lei de Benford para identificar possíveis erros.

A idéia do pacote é tornar a análise algo rápido e simples. Por exemplo, o gráfico abaixo é gerado com apenas dois comandos: bfd <- benford(dados) e plot(bfd).

Plot BenfordVamos ver se vai ficar bacana.

Atualização: a versão 0.1 está no CRAN.

Análise de redes e Moviegalaxies: seu filmes preferidos de uma forma que você nunca viu


Um campo de estudos que pode render muitos frutos na economia é o de análise de redes. Para quem tem curiosidade, há um curso bem interessante de análise de redes sociais no Coursera.

Mas, na verdade, o objetivo deste post é o de divulgar um site bem bacana, Moviegalaxies, que faz análise de rede com os personagens de filmes (você inclusive pode baixar os dados para o Gephi).

Um dos gráficos de que gostei é a o da rede de  “O Poderoso Chefão: parte II”:

The Godfather Part II

Livros de R e Python


Compartilharam comigo, agora passo em frente. Seguem dois links com alguns livros em pdf para programação em R e em Python.

Mais sobre Python: o Sargent publicou um livro online de modelagem e economia quantitativa com a linguagem.

Lei de Benford – por que ela surge?


No post anterior falamos da Lei de Benford e que ela surge naturalmente em diversos fenômenos do mundo real, inclusive em dados contábeis e econômicos. Mas não explicamos o porquê. Aqui traremos duas explicações.  A primeira, bastante intuitiva, é pensar que estes dados tem crescimento exponencial. Por exemplo, na economia (brasileira), variáveis como o PIB real e os preços crescem entre 2% e 6% ao ano, respectivamente. E como o crescimento exponencial levaria à Lei de Benford?

Suponha que o valor inicial de uma variável seja 10 e que ela tenha uma taxa de crescimento de 10% por período. Veja que, ao crescer exponencialmente, a variável vai demorar 7 períodos para chegar na casa dos 20′s. Todavia, após chegar no 20, ela cresce mais rapidamente, e leva apenas 4 períodos para chegar na casa dos 30′s. Note que esta variável irá ficar apenas um período na casa dos 90′s, para logo em seguida passar mais 7 períodos nos 100′s (e com primeiro digito 1). Parece condizer com a Lei.

Para verificar, façamos uma simulação, com uma variável que cresça 3% por período. Após 2000 períodos, a distribuição dos dígitos da série segue muito aproximadamente a Lei de Benford (como a amostra é grande, no gráfico utilizamos a distribuição dos dois primeiros dígitos, que tem maior capacidade de discriminação do que apenas a distribuição do primeiro dígito).

cresc_benfordAlém do crescimento exponencial, existe, ainda, uma razão mais convincente. Dados contábeis e econômicos também são, em geral, fruto da multiplicação de diversos números. Para saber o valor da produção,por exemplo, multiplicam-se quantidades e preços. E ocorre que a multiplicação de distribuições contínuas tem como distribuição limite um conjunto  de Benford. Façamos uma simulação com distribuições normal – N(10,10) – qui-quadrado – Q(3) e uniforme – U(0,1).

Perceba que elas, separadamente, não seguem a Lei.  Primeiro, a normal:

norm_benford

Agora a Qui-Quadrado:

qui_benford

E a Uniforme:

unif_benford

Entretanto, ao multiplicarmos as 3, eis que surge a distribuição dos dígitos!

mult_benford

A economia dos mundos virtuais


Inflação, deflação, ciclos econômicos e corridas bancárias também existem nos mundos virtuais, que podem servir como grande fonte de dados para análises econômicas. Para mais, leia esta interessante matéria do Washington Post.

Via Mankiw e Marginal Revolution.