Erro de medida e ‘atenuação’ dos efeitos estimados


Andrew Gelman publicou um pequeno comentário na Science sobre erro de medida e “atenuação dos efeitos estimados”. O argumento é o seguinte: no modelo clássico de erro de medida, na média suas estimativas são puxadas para baixo. Suponha, então, que você tenha feito um experimento com amostra pequena, com erro de medida, mas ainda assim você tenha encontrado um efeito estimado “significante”. Ora, é tentador argumentar o seguinte: tanto a amostra pequena quanto o erro de medida estão “jogando contra” meu efeito estimado, então é provável que o efeito real seja ainda maior do que o que eu estimei. Parece lógico, não?

Parece, mas não é. E, infelizmente, esse raciocínio ainda engana muitos pesquisadores. Na verdade, em um contexto de efeitos reais pequenos junto com amostras pequenas, é mais provável que aquelas estimativas estatisticamente significantes estejam superestimando o efeito real. O problema aqui é que o ruído das amostras pequenas em conjunto com o viés de seleção de estimativas estatisticamente significantes predomina. Vejamos isso na prática com uma simples simulação.

No código abaixo eu simulo mil estudos com um tamanho amostral fixo (n = 10, n = 20, n = 50, n = 500 e n = 1000). Desses mil estudos, eu seleciono apenas aqueles que são estatisticamente “significantes” e coloco no gráfico o valor estimado do estudo. O valor real do efeito é 0.1, que está representado pela linha vermelha. Vejam que, para amostras até de tamanho 100, todas as estimativas “significantes” da simulação estão superestimando o efeito real. Apenas quando a amostra é grande o suficiente que o efeito atenuante do erro de medida se faz prevalecer, revertendo o resultado.

plot of chunk cars

E se você comparar as estimativas com e sem erro de medida, como faz Gelman, também vai verificar que com amostras pequenas dificilmente uma é sempre maior do que a outra.


Código para simulação:

rm(list = ls())
set.seed(10)
ns = c(10, 20, 50, 100, 500, 1000)
oldpar <- par(mfrow = c(2,3))
for (n in ns) {
  b = 0.1
  x <- rnorm(n)
  y <- b*x 

  coefs <- replicate(1000, {
    xs <- x + rnorm(n)
    ys <- y + rnorm(n)
    coef(summary(lm(ys ~ xs)))[2,]
  })

  coefs <- t(coefs)
  plot(coefs[coefs[,3] > 2, 1], ylim = c(min(c(b, coefs[,1])), max(coefs[,1])),
       xlab = "Significant Experiments", ylab = "'Significant' Estimates",
       main = paste("Sample size =", n), pch = 20)
  abline(h = b, col = "red", lty = 2)
}
par(oldpar)
Anúncios

2 pensamentos sobre “Erro de medida e ‘atenuação’ dos efeitos estimados

Deixe uma resposta

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s