Data Frames


***

Parte do livro Introdução à análise de dados com R.  Este trabalho está em andamento, o texto é bastante preliminar e sofrerá muitas alterações. 

Quer fazer sugestões? Deixe um comentário abaixo ou, se você sabe utilizar o github, acesse aqui.

Não copie ou reproduza este material sem autorização.

Volte para ver atualizações!

***

Data Frames: seu banco de dados no R

Por que um data.frame?

Até agora temos utilizado apenas dados de uma mesma classe, armazenados ou em um vetor ou em uma matriz. Mas uma base de dados, em geral, é feita de dados de diversas classes diferentes: no exemplo anterior, por exemplo, podemos querer ter uma coluna com os nomes dos funcionários, outra com o sexo dos funcionários, outra com valores… note que essas colunas são de classes diferentes, como textos e números. Como guardar essas informações?

A solução para isso é o data.frame. O data.frame é talvez o formato de dados mais importante do R. No data.frame cada coluna representa uma variável e cada linha uma observação. Essa é a estrutura ideal para quando você tem várias variáveis de classes diferentes em um banco de dados.

Criando um data.frame: data.frame() e as.data.frame()

É possível criar um data.frame diretamente com a função data.frame():

funcionarios <- data.frame(nome = c("João", "Maria", "José"),
                           sexo = c("M", "F", "M"),
                           salario = c(1000, 1200, 1300),
                           stringsAsFactors = FALSE)
funcionarios
##    nome sexo salario
## 1  João    M    1000
## 2 Maria    F    1200
## 3  José    M    1300

Também é coverter outros objetos em um data.frame com a função as.data.frame().

Discutiremos a opção stringsAsFactors = FALSE mais a frente.

Vejamos a estrutura do data.frame. Note que cada coluna tem sua própria classe.

str(funcionarios)
## 'data.frame':    3 obs. of  3 variables:
##  $ nome   : chr  "João" "Maria" "José"
##  $ sexo   : chr  "M" "F" "M"
##  $ salario: num  1000 1200 1300

Nomes de linhas e colunas

O data.frame sempre terá rownames e colnames.

rownames(funcionarios)
## [1] "1" "2" "3"

colnames(funcionarios)
## [1] "nome"    "sexo"    "salario"

Detalhe: a função names() no data.fram trata de suas colunas, pois os elementos fundamentais do data.frame são seus vetores coluna.

names(funcionarios)
## [1] "nome"    "sexo"    "salario"

Não parece tão diferente de uma matriz…

O que ocorreria com o data.frame funcionarios se o transformássemos em uma matriz? Vejamos:

as.matrix(funcionarios)
##      nome    sexo salario
## [1,] "João"  "M"  "1000"
## [2,] "Maria" "F"  "1200"
## [3,] "José"  "M"  "1300"

Perceba que todas as variáveis viraram character! Uma matriz aceita apenas elementos da mesma classe, e é exatamente por isso precisamos de um data.frame neste caso.

Manipulando data.frames como matrizes

Ok, temos mais um objeto do R, o data.frame … vou ter que reaprender tudo novamente? Não! Você pode manipular data.frames como se fossem matrizes!

Praticamente tudo o que vimos para selecionar e modificar elementos em matrizes funciona no data.frame. Podemos selecionar linhas e colunas do nosso data.frame como se fosse uma matriz:

## tudo menos linha 1
funcionarios[-1, ]
##    nome sexo salario
## 2 Maria    F    1200
## 3  José    M    1300

## seleciona primeira linha e primeira coluna (vetor)
funcionarios[1, 1]
## [1] "João"

## seleciona primeira linha e primeira coluna (data.frame)
funcionarios[1, 1, drop = FALSE]
##   nome
## 1 João

## seleciona linha 3, colunas "nome" e "salario"
funcionarios[3 , c("nome", "salario")]
##   nome salario
## 3 José    1300

E também alterar seus valores tal como uma matriz.

## aumento de salario para o João
funcionarios[1, "salario"] <- 1100

funcionarios
##    nome sexo salario
## 1  João    M    1100
## 2 Maria    F    1200
## 3  José    M    1300

Extra do data.frame: selecionando e modificando com $ e [[ ]]

Outras formas alternativas de selecionar colunas em um data.frame são o $ e o [[ ]]:

## Seleciona coluna nome
funcionarios$nome
## [1] "João"  "Maria" "José"

funcionarios[["nome"]]
## [1] "João"  "Maria" "José"

## Seleciona coluna salario
funcionarios$salario
## [1] 1100 1200 1300

funcionarios[["salario"]]
## [1] 1100 1200 1300

Tanto o $ quanto o [[ ]] sempre retornam um vetor como resultado.

Também é possível alterar a coluna combinando $ ou [[ ]] com <-:

## outro aumento para o João
funcionarios$salario[1] <- 1150

## equivalente
funcionarios[["salario"]][1] <- 1150
funcionarios
##    nome sexo salario
## 1  João    M    1150
## 2 Maria    F    1200
## 3  José    M    1300

Extra do data.frame: retornando sempre um data.frame com [ ]

Se você quiser garantir que o resultado da seleção será sempre um data.frame use drop = FALSE ou selecione sem a vírgula:

## Retorna data.frame
funcionarios[ ,"salario", drop = FALSE]
##   salario
## 1    1150
## 2    1200
## 3    1300

## Retorna data.frame
funcionarios["salario"]
##   salario
## 1    1150
## 2    1200
## 3    1300

Tabela resumo: selecionando uma coluna em um data.frame

Resumindo as formas de seleção de uma coluna de um data.frame.

screen-shot-2017-02-07-at-12-02-02-am

Criando colunas novas

Há diversas formas de criar uma coluna nova em um data.frame. O principal segredo é o seguinte: faça de conta que a coluna já exista, selecione ela com $, [,] ou [[]] e atribua o valor que deseja.

Para ilustrar, vamos adicionar ao nosso data.frame funcionarios mais três colunas.

Com $:

funcionarios$escolaridade <- c("Ensino Médio", "Graduação", "Mestrado")

Com [ , ]:

funcionarios[, "experiencia"] <- c(10, 12, 15)

Com [[ ]]:

funcionarios[["avaliacao_anual"]] <- c(7, 9, 10)

Uma última forma de adicionar coluna a um data.frame é, tal como uma matriz, utilizar a função cbind() (column bind).

funcionarios <- cbind(funcionarios,
                      prim_emprego = c("sim", "nao", "nao"),
                      stringsAsFactors = FALSE)

Vejamos como ficou nosso data.frame com as novas colunas:

funcionarios
##    nome sexo salario escolaridade experiencia avaliacao_anual prim_emprego
## 1  João    M    1150 Ensino Médio          10               7          sim
## 2 Maria    F    1200    Graduação          12               9          nao
## 3  José    M    1300     Mestrado          15              10          nao

E agora, temos colunas demais, como remover algumas delas?

Removendo colunas

A forma mais fácil de remover coluna de um data.fram é atribuir o valor NULL a ela:

## deleta coluna prim_emprego
funcionarios$prim_emprego <- NULL

Mas a forma mais segura e universal de remover qualquer elemento de um objeto do R é selecionar tudo exceto aquilo que você não deseja. Isto é, selecione todas colunas menos as que você não quer e atribua o resultado de volta ao seu data.frame:

## deleta colunas 4 e 6
funcionarios <- funcionarios[, c(-4, -6)]

Adicionando linhas

Uma forma simples de adicionar linhas é atribuir a nova linha com <-. Mas cuidado! O que irá acontecer com o data.frame com o código abaixo?

## CUIDADO!
funcionarios[4, ] <- c("Ana", "F", 2000,  15)

Note que nosso data.frame inteiro se transformou em texto! Você sabe explicar por que isso aconteceu? relembrar coerção

str(funcionarios)
## 'data.frame':    4 obs. of  4 variables:
##  $ nome       : chr  "João" "Maria" "José" "Ana"
##  $ sexo       : chr  "M" "F" "M" "F"
##  $ salario    : chr  "1150" "1200" "1300" "2000"
##  $ experiencia: chr  "10" "12" "15" "15"

Antes de prosseguir, transformemos as colunas salario e experiencia em números novamente:

funcionarios$salario <- as.numeric(funcionarios$salario) 

funcionarios$experiencia <- as.numeric(funcionarios$experiencia)

Se os elementos forem de classe diferente, use a função data.frame para evitar coerção:

funcionarios[4, ] <- data.frame(nome = "Ana", sexo = "F",
                                salario = 2000, experiencia = 15,
                                stringsAsFactors = FALSE)

Também é possível adicionar linhas com rbind():

rbind(funcionarios,
      data.frame(nome = "Ana", sexo = "F",
                 salario = 2000,  experiencia = 15,
                 stringsAsFactors = FALSE))

Atenção! Não fique aumentando um data.frame de tamanho adicionando linhas ou colunas. Sempre que possível pré-aloque espaço!

Removendo linhas

Para remover linhas, basta selecionar apenas aquelas linhas que você deseja manter:

## remove linha 4 do data.frame
funcionarios <- funcionarios[-4, ]
## remove linhas em que salario <= 1150
funcionarios <- funcionarios[funcionarios$salario > 1150, ]

Filtrando linhas com vetores logicos

Relembrando: se passarmos um vetor lógico na dimensão das linhas, selecionamos apenas aquelas que são TRUE. Assim, por exemplo, se quisermos selecionar aquelas linhas em que a coluna salario é maior do que um determinado valor, basta colocar esta condição como filtro das linhas:

## Apenas linhas com salario > 1000
funcionarios[funcionarios$salario > 1000, ]
##    nome sexo salario experiencia
## 2 Maria    F    1200          12
## 3  José    M    1300          15

## Apenas linhas com sexo == "F"
funcionarios[funcionarios$sexo == "F", ]
##    nome sexo salario experiencia
## 2 Maria    F    1200          12

Funções de conveniência: subset()

Uma função de conveniência para selecionar linhas e colunas de um data.frame é a função subset(), que tem a seguinte estrutura:

subset(nome_do_data_frame,
       subset = expressao_logica_para_filtrar_linhas,
       select = nomes_das_colunas,
       drop   = simplicar_para_vetor?)

Vejamos alguns exemplos:

## funcionarios[funcionarios$sexo == "F",]
subset(funcionarios, sexo == "F")
##    nome sexo salario experiencia
## 2 Maria    F    1200          12

## funcionarios[funcionarios$sexo == "M", c("nome", "salario")]
subset(funcionarios, sexo == "M", select = c("nome", "salario"))
##   nome salario
## 3 José    1300

Funções de conveniência: with

A função with() permite que façamos operações com as colunas do data.frame sem ter que ficar repetindo o nome do data.frame seguido de $ , [ , ] ou [[]] o tempo inteiro.

Para ilustrar:

## Com o with
with(funcionarios, (salario^3 - salario^2)/log(salario))
## [1] 2.4e+08 3.1e+08

## Sem o with
(funcionarios$salario^3 - funcionarios$salario^2)/log(funcionarios$salario)
## [1] 2.4e+08 3.1e+08

Quatro formas de fazer a mesma coisa (pense em outras formas possíveis):

subset(funcionarios, sexo == "M", select = "salario", drop = TRUE)
## [1] 1300

with(funcionarios, salario[sexo == "M"])
## [1] 1300

funcionarios$salario[funcionarios$sexo == "M"]
## [1] 1300

funcionarios[funcionarios$sexo == "M", "salario"]
## [1] 1300

Aplicando funções no data.frame: sapply e lapply, funções nas colunas (elementos)

Outras duas funções bastante utilizadas no R são as funções sapply() e lapply().

  • As funções sapply e lapply aplicam uma função em cada elemento de um objeto.
  • Como vimos, os elementos de um data.frame são suas colunas. Deste modo, as funções sapply e lapply aplicam uma função nas colunas de um data.frame.
  • A diferença entre uma e outra é que a primeira tenta simplificar o resultado enquanto que a segunda sempre retorna uma lista.

Testando no nosso data.frame:

sapply(funcionarios[3:4], mean)
##     salario experiencia
##        1250          14

lapply(funcionarios[3:4], mean)
## $salario
## [1] 1250
##
## $experiencia
## [1] 14

Filtrando variáveis antes de aplicar funções: filter()

Como data.frames podem ter variáveis de classe diferentes, muitas vezes é conveniente filtrar apenas aquelas colunas de determinada classe (ou que satisfaçam determinada condição). A função Filter() é uma maneira rápida de fazer isso:

# seleciona apenas colunas numéricas
Filter(is.numeric, funcionarios)
##   salario experiencia
## 2    1200          12
## 3    1300          15

# seleciona apenas colunas de texto
Filter(is.character, funcionarios)
##    nome sexo
## 2 Maria    F
## 3  José    M

Juntando filter() com sapply() você pode aplicar funções em apenas certas colunas, como por exemplo, calcular a média e máximo apenas nas colunas numéricas do nosso data.frame:

sapply(Filter(is.numeric, funcionarios), mean)
##     salario experiencia
##        1250          14

sapply(Filter(is.numeric, funcionarios), max)
##     salario experiencia
##        1300          15

Manipulando data.frames

Ainda temos muita coisa para falar de manipulação de data.framese isso merece um espaço especial. Veremos além de outras funções base do R alguns pacotes importantes como dplyr, reshape2 e tidyr em uma seção separada.

Computer age statistical inference e The undoing project


Segue minha sugestão de leitura para as férias de final de ano: um livro de estatística e outro de psicologia/economia comportamental.

Para falar a verdade, ainda não os li, mas já recomendo.

O primeiro livro é do Michael Lewis, sem dúvida um dos melhores cronistas da atualidade (entre outros ótimos livros: Flash Boys, Moneyball, The Big Short). Lewis conta a história da vida e amizade dos dois psicólogos israelenses que começaram a revolução da economia comportamental:Daniel Kahneman e Amos Tversky. Para quem ainda não conhece o trabalho da dupla, vale a pena recomendar de novo o já clássico Thiking, Fast and Slow.

O segundo livro é o mais novo lançamento dos estatísticos Bradley Efron e Trevor Hastie. Os dois fazem um tour histórico e técnico pela revolução computacional dos últimos 60 anos da estatística. Para quem está começando na área, Efron é mais conhecido por seu trabalho no bootstrap; Trevor (junto com Tibshirani), por seus trabalhos em GAMs e modelos esparsos entre outros. Trevor também é co-autor dos já famosos Elements of Statistical Learning e sua recente versão baby An introduction to Statistical Learning — ambos com versões gratuitas na internet (aqui e aqui).

O que tenho estudado — Causalidade


Para o blog não passar novembro em branco — o que tenho estudado e algumas referências.

Em causalidade acredito que essas sejam as referências básicas:

Morgan & Winship;
Imbens & Rubin;
Pearl, Glymour & Jewell;
Pearl.

Esses livros são muito mais do que suficiente para você começar no assunto. O mais amigável e completo para iniciantes é Morgan & Winship. Imbens & Rubin também é  bom, mas peca por ignorar DAGs. Se for para ler apenas um, escolha Morgan & Winship. Pearl, Glymour & Jewell é uma versão light e curta a nível de graduação —acabou de ser lançada.  Pearl é mais denso e se você nunca viu um DAG antes não comece por ele, comece por Pearl, Glymour & Jewell. Depois que tiver dominado DAGs, entretanto, não deixe de voltar para o livro seminal de Pearl.

Já tinha batido no livro do Wooldridge uma vez por não tratar mais claramente dos problemas de specification searches e multiple testing, que na prática é o que é feito no dia-a-dia do econometrista. Agora vale a pena bater de novo por conta da causalidade (mas é claro que esse problema não é só do Wooldridge, uso ele apenas como um exemplo em geral). Faz algum tempo que estou convencido de que é uma péssima prática ensinar estatística para cientistas sociais sem prover algum framework adequado para se falar de causalidade — e quando falo de framework adequado, não digo tricks para identificar efeitos causais como variáveis instrumentais ou regression discontinuity designs. Falo de um ferramental para ajudar o pesquisador a pensar rigorosamente e claramente sobre o assunto.

Depois vou tentar falar um pouco sobre o que tenho estudado em algoritmos, estatística computacional, pesquisa amostral e probabilidade nesse último trimestre.

Personalizando seu gráfico do ggplot2 – Exports and Imports, William Playfair


O ggplot2 é muito bom para explorar visualmente, de forma dinâmica, sua base de dados.  Mas às vezes queremos editar cada detalhe do gráfico para uma publicação, é possível fazer isso?

Como, por exemplo, reproduzir o famoso gráfico de exportações e importações do William Playfair?

Playfair-bivariate-area-chart

Hoje resolvi testar o quão difícil seria gerar uma imagem parecida e, brincando um pouco com os parâmetros, cheguei na figura abaixo. É um pouco trabalhoso – pois temos que colocar cada texto separadamente – mas não é difícil, nem tão demorado assim.

playfair

Se você tiver um pouco mais de paciência para ajustar detalhes talvez consiga tornar a reprodução ainda mais fiel. E, caso o faça, favor compartilhar o código com todos por aqui!

***

Segue abaixo o código para gerar o gráfico acima. Os dados bem como o próprio código também estão no github.

 

# load packages -----------------------------------------------------------
library(reshape2)
library(ggplot2)

# prepare data for ggplot2 ------------------------------------------------
## data extracted from https://plot.ly/~MattSundquist/2404/exports-and-imports-to-and-from-denmark-norway-from-1700-to-1780/#plot
playfair <- readRDS("william_playfair.rds")

## create min for geom_ribbon
playfair$min <- with(playfair, pmin(exp, imp))
year <- playfair$year

## melt data
molten_data <- melt(playfair, id.vars = c("year", "min"))

# ggplot2 -----------------------------------------------------------------
ggplot(molten_data, aes(x = year, y = value)) +
geom_line(aes(col = variable), size = 1) +
geom_ribbon(aes(ymin = min, ymax = value, fill = variable), alpha = 0.3) +
scale_color_manual(values = c("darkred", "gold3"), guide = F) +
scale_fill_manual(values = c("#90752d", "#BB5766"), guide = F) +
theme_bw() +
annotate("text", x = year[5], y = 100000, label = "Line", angle = 25, size = 3, family = "Garamond") +
annotate("text", x = year[6] - 100, y = 104000, label = "of", angle = 0, size = 3, family = "Garamond") +
annotate("text", x = year[7], y = 101000, label = "Imports", angle = 340, size = 3, family = "Garamond") +
annotate("text", x = year[5] + 400, y = 73000, label = "Line", angle = 345, size = 3, family = "Garamond") +
annotate("text", x = year[6], y = 70000, label = "of", angle = 330, size = 3, family = "Garamond") +
annotate("text", x = year[7] - 200, y = 64000, label = "Exports", angle = 335, size = 3, family = "Garamond") +
annotate("text", x = year[8], y = 83000, label = "italic('BALANCE AGAINST')", angle = 0, family = "Garamond", parse = TRUE) +
annotate("text", x = year[16] + 400, y = 110000, label = "italic('BALANCE in\nFAVOUR of\nENGLAND')", angle = 0, family = "Garamond", parse = TRUE) +
annotate("text", x = year[16], y = 82000, label = "Imports", angle = 30, size = 3, family = "Garamond") +
annotate("text", x = year[14] + 200, y = 131000, label = "Exports", angle = 65, size = 3, family = "Garamond") +
ggtitle("Exports and Imports to and from DENMARK & NORWAY from 1700 to 1780") +
scale_x_date(breaks = seq(year[1], year[18], by = "10 years"),
labels = format(seq(year[1], year[18], by = "10 years"), "%Y")) +
scale_y_continuous(breaks = seq(0, 190e3, by = 10e3),
labels = seq(0, 190, by = 10)) +
theme(title = element_text(size = 8, face = 'bold', family = "Garamond"),
axis.title = element_blank(),
axis.text = element_text(family = "Garamond"),
panel.grid.minor = element_blank())

Programação no R: if(), if() else e ifelse()


***

Parte do livro Introdução à análise de dados com R.  Este trabalho está em andamento, o texto é bastante preliminar e sofrerá muitas alterações. 

Quer fazer um curso presencialmente!? Estamos com turmas abertas em Brasília e São Paulo!

Quer fazer sugestões? Deixe um comentário abaixo ou, se você sabe utilizar o github, acesse aqui.

Não copie ou reproduza este material sem autorização.

Volte para ver atualizações!

***

Há ocasiões em queremos ou precisamos executar parte do código apenas se alguma condição for atendida. O R fornece três opções básicas para estruturar seu código dessa maneira: if(), if() else e ifelse(). Vejamos cada uma delas.

O if() sozinho

A estrutura básica do if() é a seguinte:

if (condicao) {

  # comandos que
  # serao rodados
  # caso condicao = TRUE

}
  • O início do código se dá com o comando if seguido de parênteses e chaves;
  • Dentro do parênteses temos uma condição lógica, que deverá ter como resultado ou TRUE ou FALSE;
  • Dentro das chaves temos o bloco de código que será executado se – e somente se – a condição do parênteses for TRUE.

Vejamos um exemplo muito simples. Temos dois blocos de código que criam as variáveis x e y, mas eles só serão executados se as variáveis cria_x e cria_y forem TRUE, respectivamente.

# vetores de condição lógica
cria_x <- TRUE
cria_y <- FALSE

# só executa se cria_x = TRUE
if (cria_x) {
  x <- 1
}

# só executa se cria_y = TRUE
if (cria_y) {
  y <- 1
}

# note que x foi criado
exists("x")
## [1] TRUE

# note que y não foi criado
exists("y")
## [1] FALSE

Note que somente a variável x foi criada. Vamos agora rodar o mesmo bloco mas com TRUE e FALSE diferentes.

# remove x que foi criado
rm(x)

# vetores de condição lógica
cria_x <- FALSE
cria_y <- TRUE

# só executa se cria_x = TRUE
if (cria_x) {
  x <- 1
}

# só executa se cria_y = TRUE
if (cria_y) {
  y <- 1
}

# note que x não foi criado
exists("x")
## [1] FALSE

# note que y foi criado
exists("y")
## [1] TRUE

Note que agora apenas o y foi criado.

O if() com o else

Outra forma de executar códigos de maneira condicional é acrescentar ao if() o opcional else.

A estrutura básica do if() else é a seguinte:

if (condicao) {

  # comandos que
  # serao rodados
  # caso condicao = TRUE

} else {

  # comandos que
  # serao rodados
  # caso condicao = FALSE

}
  • O início do código se dá com o comando if seguido de parênteses e chaves;
  • Dentro do parênteses temos uma condição lógica, que deverá ter como resultado ou TRUE ou FALSE;
  • Dentro das chaves do if() temos um bloco de código que será executado se – e somente se – a condição do parênteses for TRUE.
  • Logo em seguida temos o else seguido de chaves;
  • Dentro das chaves do else temos um bloco de código que será executado se – e somente se – a condição do parênteses for FALSE.

Como no caso anterior, vejamos primeiramente um exemplo bastante simples.

numero <- 1

if (numero == 1) {
  cat("o numero é igual a 1")
} else {
  cat("o numero não é igual a 1")
}
## o numero é igual a 1

É possível encadear diversos if() else em sequência:

numero <- 10

if (numero == 1) {
  cat("o numero é igual a 1")
} else if (numero == 2) {
  cat("o numero é igual a 2")
} else {
  cat("o numero não é igual nem a 1 nem a 2")
}
## o numero não é igual nem a 1 nem a 2

Para fins de ilustração, vamos criar uma função que nos diga se um número é par ou ímpar. Nela vamos utilizar tanto o if() sozinho quanto o if() else.

Vale relembrar que um número (inteiro) é par se for divisível por 2 e que podemos verificar isso se o resto da divisão (operador %% no R) deste número por 2 for igual a zero.

par_ou_impar <- function(x){

  # verifica se o número é um decimal comparando o tamanho da diferença de x e round(x)
  # se for decimal retorna NA (pois par e ímpar não fazem sentido para decimais)
  if (abs(x - round(x)) > 1e-7) {
    return(NA)
  }

  # se o número for divisível por 2 (resto da divisão zero) retorna "par"
  # caso contrário, retorna "ímpar"
  if (x %% 2 == 0) {
    return("par")
  } else {
    return("impar")
  }

}

Vamos testar nossa função:

par_ou_impar(4)
## [1] "par"
par_ou_impar(5)
## [1] "impar"
par_ou_impar(2.1)
## [1] NA

Parece que está funcionando bem… só tem um pequeno problema. Se quisermos aplicar nossa função a um vetor de números, olhe o que ocorrerá:

x <- 1:5
par_ou_impar(x)
## Warning in if (abs(x - round(x)) > 1e-07) {: a condição tem comprimento > 1 e somente o primeiro
## elemento será usado
## Warning in if (x%%2 == 0) {: a condição tem comprimento > 1 e somente o primeiro elemento será usado
## [1] "impar"

Provavelmente não era isso o que esperávamos. O que está ocorrendo aqui?

A função ifelse()

Os comandos if() e if() else não são vetorizados. Uma alternativa para casos como esses é utilizar a função ifelse().

A função ifelse() tem a seguinte estrutura básica:

ifelse(vetor_de_condicoes, valor_se_TRUE, valor_se_FALSE)
  • o primeiro argumento é um vetor (ou uma expressão que retorna um vetor) com vários TRUE e FALSE;
  • o segundo argumento é o valor que será retornado quando o elemento do vetor_de_condicoes for TRUE;
  • o terceiro argumento é o valor que será retornado quando o elemento do vetor_de_condicoes for FALSE.

Primeiramente, vejamos um caso trivial, para entender melhor como funciona o ifelse():

ifelse(c(TRUE, FALSE, FALSE, TRUE), 1, -1)
## [1]  1 -1 -1  1

Note que passamos um vetor de condições com TRUE, FALSE, FALSE e TRUE. O valor para o caso TRUE é 1 e o valor para o caso FALSE é -1. Logo, o resultado é 1, -1, -1 e 1.

Façamos agora um exemplo um pouco mais elaborado. Vamos criar uma versão com ifelse da nossa função que nos diz se um número é par ou ímpar.

par_ou_impar_ifelse <- function(x){

  # se x for decimal, retorna NA, se não for, retorna ele mesmo (x)
  x <- ifelse(abs(x - round(x)) > 1e-7, NA, x)

  # se x for divisivel por 2, retorna 'par', se não for, retorna impar
  ifelse(x %% 2 == 0, "par", "impar")
}

Testemos a função com vetores. Perceba que agora funciona sem problemas!

par_ou_impar_ifelse(x)
## [1] "impar" "par"   "impar" "par"   "impar"
par_ou_impar_ifelse(c(x, 1.1))
## [1] "impar" "par"   "impar" "par"   "impar" NA

Vetorização e ifelse()

Um tema constante neste livro é fazer com que você comece a pensar em explorar a vetorização do R. Este caso não é diferente, note que poderíamos ter feito a função utilizando apenas comparações vetorizadas:

par_ou_impar_vec <- function(x){

  # transforma decimais em NA
  decimais <- abs(x - round(x)) > 1e-7
  x[decimais] <- NA

  # Cria vetor para aramazenar resultados
  res <- character(length(x))

  # verificar quem é divisível por dois
  ind <- (x %% 2) == 0

  # quem for é par
  res[ind] <- "par"

  # quem não for é ímpar
  res[!ind] <- "impar"

  # retorna resultado
  return(res)
}

Na prática, o que a função ifelse() faz é mais ou menos isso o que fizemos acima – comparações e substituições de forma vetorizada. Note que, neste caso, nossa implementação ficou inclusive um pouco mais rápida do que a solução anterior com ifelse():

library(microbenchmark)
microbenchmark(par_ou_impar_vec(1:1e3), par_ou_impar_ifelse(1:1e3))
## Unit: microseconds
##                         expr min  lq mean median  uq  max neval cld
##     par_ou_impar_vec(1:1000)  56  58   85     59  83 1428   100  a 
##  par_ou_impar_ifelse(1:1000) 322 324  411    326 414 2422   100   b

Loops no R: usando o for()


***

Parte do livro Introdução à análise de dados com R.  Este trabalho está em andamento, o texto é bastante preliminar e sofrerá muitas alterações. 

Quer fazer um curso presencialmente!? Estamos com turmas abertas em Brasília e São Paulo!

Quer fazer sugestões? Deixe um comentário abaixo ou, se você sabe utilizar o github, acesse aqui.

Não copie ou reproduza este material sem autorização.

Volte para ver atualizações!

***

Loops: for()

Um loop utilizando for() no R tem a seguinte estrutura básica:

for(i in conjunto_de_valores){
  # comandos que 
  # serão repetidos
}
  • O início do loop se dá com o comando for seguido de parênteses e chaves;
  • Dentro do parênteses temos um indicador que será usado durante o loop (no caso escolhemos o nome i) e um conjunto de valores que será iterado (conjunto_de_valores).
  • Dentro das chaves temos o bloco de código que será executado durante o loop.

Em outras palavras, no comando acima estamos dizendo que para cada elemento i contido no conjunto_de_valores iremos executar os comandos que estão dentro das chaves.

Para facilitar o entendimento, vejamos dois exemplos muito simples. Primeiro, vamos imprimir na tela os números de 1 a 5.

for(i in 1:5){
  print(i)
}
## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5

Agora, vamos imprimir na tela as 5 primeiras letras do alfabeto (o R já vem com um vetor com as letras do alfabeto: letters).

for(i in 1:5){
  print(letters[i])
}
## [1] "a"
## [1] "b"
## [1] "c"
## [1] "d"
## [1] "e"

No mesmo exemplo, acima, ao invés correr o loop no índice de inteiros 1:5, vamos iterar diretamente sobre os primeiros 5 elementos do vetor letters:

for(letra in letters[1:5]){
  print(letra)
}
## [1] "a"
## [1] "b"
## [1] "c"
## [1] "d"
## [1] "e"

seq_along

Uma função bastante útil ao fazer loops é a função seg_along(). Ela cria um vetor de inteiros com índices para acompanhar o objeto.

# criando um vetor de exemplo
set.seed(119)
x <- rnorm(10)

# inteiros de 1 a 10
seq_along(x)
##  [1]  1  2  3  4  5  6  7  8  9 10

Também é possível criar um vetor de inteiros do tamanho do objeto fazendo uma sequência de 1 até length(x):

1:length(x)
##  [1]  1  2  3  4  5  6  7  8  9 10

Entretanto, a vantagem de seq_along() é que quando o vetor é vazio, ela retorna um vetor vazio e, deste modo, o loop não é executado (o que é o comportamento correto).

Já a sequência 1:length(x) retorna a sequência 1:0, isto é, uma sequência decrescente de 1 até 0, e loop é executado nestes valores.

Vejamos:

# cria vetor vazio
x <- numeric(0)

# 1:length(x)
# note que o loop é executado (o que é errado)
for(i in 1:length(x)) print(i)
## [1] 1
## [1] 0

# seq_along
# note que o loop não é executado (o que é correto)
for(i in seq_along(x)) print(i)

Vetorização, funções nativas e loops

Como vimos, o R é vetorizado. Muitas vezes, quando você pensar que precisa usar um loop, ao pensar melhor, descobrirá que não precisa. Em geral é possível resolver o problema de maneira vetorizada e usando funções nativas do R.

Para quem está aprendendo a programar diretamente com o R, isso é algo que virá naturalmente. Todavia, para quem já sabia programar em outras linguagens de programação – como C – pode ser difícil se acostumar a pensar desta maneira.

Vejamos um exemplo trivial. Suponha que você queira dividir os valores de um vetor x por 10. Se o R não fosse vetorizado, você teria que fazer algo como:

# criando vetor de exemplo
x <- 10:20

# divide cada elemento por 10
for(i in seq_along(x)) 
  x[i] <- x[i]/10

# resultado
x
##  [1] 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Mas o R é vetorizado e, portanto, este é o tipo de loop que não faz sentido na linguagem. É muito mais rápido e fácil de enteder escrever simplesmente x/10.

# recriando vetor de exemplo
x <- 10:20

# divide cada elemento por 10
x <- x/10
x
##  [1] 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Vejamos um caso um pouco mais complicado. Suponha que você queira, gerar um passeio aleatório com um algoritmo simples: a cada período você pode andar para frente (+1) ou para trás (-1) com probabilidades iguais.

set.seed(1)

# número de passos
n <- 1000

# vetor para armazenar o passeio aleatório
passeio <- numeric(n)

# primeiro passo
passeio[1] <- sample(c(-1, 1), 1)

# demais passos
for(i in 2:n){

  # passo i é o onte você estava (passeio[i-1]) 
  # mais o passo seguinte
  passeio[i] <- passeio[i - 1] + sample(c(-1, 1), 1)
}

É possível fazer tudo isso com apenas uma linha de maneira “vetorizada” e bem mais eficiente: crie todos os n passos de uma vez e faça a soma acumulada.

set.seed(1)
passeio2 <- cumsum(sample(c(-1, 1), n, TRUE))

# verifica se são iguais
all.equal(passeio, passeio2)
## [1] TRUE

Então, você deve estar se perguntando: “não é para usar loops nunca”?

Não é isso. Em algumas situações loops são inevitáveis e podem inclusive ser mais fáceis de ler e de entender. O ponto aqui é apenas lembrá-lo de explorar a vetorização do R.

Voltando ao nosso exemplo do passeio aleatório, você deve ter notado a linha passeio <- numeric(n) em que criamos um vetor numérico para ir armazenando os resultados das iterações. Discutamos um pouco mais esse ponto.

Pré-alocar espaço antes do loop

Um erro bastante comum de quem está começando a programar em R é “crescer” objetos durante o loop. Isto tem um impacto substancial na performance do seu programa! Sempre que possível, crie um objeto, antes de iniciar o loop, para armazenar os resultados de cada iteração.

Vejamos um exemplo um pouco mais elaborado: vamos calcular os n primeiros números da sequência de Fibonacci: F_1 = 0F_2 = 1, F_3 = 1, $latexF_4 = 2$, F_5 = 3, F_6 = 5, F_7 = 8, F_8 = 13, F_9 = 21, e assim por diante.

Note que a sequência de Fibonacci pode ser definida da seguinte forma, os primeiros dois números são 0 e 1, isto é, F_1 = 0, F_2 = 1. A partir daí, os números subsequentes são a soma dos dois números anteriores, isto é, F_i = F_{i-1} + F_{i-2} para todo i > 2.

Vejamos uma forma de implementar isto no R usando for() e criando um vetor para armazenar os resultados:

n <- 9

# crie um vetor de tamanho n 
# para armazenar os n resultados
fib <- numeric(n)

# comece definindo as condições iniciais
# F1 = 0 e F2 = 1
fib[1] <- 0
fib[2] <- 1

# Agora para todo i > 2 
# calculamos Fi = F(i-1) + F(i - 2)
for(i in 3:n){
  fib[i] <- fib[i - 1] + fib[i - 2]
}

# conferindo resultado
fib
## [1]  0  1  1  2  3  5  8 13 21

Vamos comparar a performance deste código com outro sem pré-alocar um vetor de resultados. Primeiro, transformemos nosso loop em uma função:

fib <- function(n){
  # vetor para armazenar resultados
  fib <- numeric(n)

  # condições iniciais
  fib[1] <- 0
  fib[2] <- 1

  # calculandos o números de 3 a n
  for(i in 3:n){
    fib[i] <- fib[i - 1] + fib[i - 2]
  }

  return(fib)
}

Agora, criemos outra função em que o vetor fib cresce a cada iteração:

fib_sem_pre_alocar <- function(n){

  # condições iniciais
  fib    <- 0
  fib    <- c(fib, 1)

  # calculandos o números de 3 a n
  for(i in 3:n){
    fib <- c(fib, fib[i - 1] + fib[i - 2])
  }

  return(fib)
}

Comparando as duas implementações:

library(microbenchmark)
set.seed(5)
microbenchmark(fib(5000), fib_sem_pre_alocar(5000))
## Unit: milliseconds
##                      expr  min lq mean median   uq max neval cld
##                 fib(5000)  5.8  6  6.5    6.4  6.9  10   100  a 
##  fib_sem_pre_alocar(5000) 39.0 53 60.5   56.4 58.9 195   100   b

Note que quanto maior o número de simulações, maior a queda na performance: com n = 5000 a função fib_sem_pre_alocar() chega a ser mais de 10 vezes mais lenta do que a função fib().

Exemplo: entendendo a família apply

Vamos calcular a média de cada uma das colunas do data.frame mtcars usando loops.

Para isso precisamos: (i) saber quantas colunas existem no data.frame; (ii) criar um vetor para armazenar os resultados; (iii) nomear o vetor de resultados com os nomes das colunas; e (iv) fazer um loop para cada coluna.

# (i) quantas colunas no data.frame
n <- ncol(mtcars)

# (ii) vetor para armazenar resultados
medias <- numeric(n)

# (iii) nomeando vetor com nomes das colunas
names(medias) <- colnames(mtcars)

# (iv) loop para cada coluna
for(i in seq_along(mtcars)){
  medias[i] <- mean(mtcars[,i])
}

# resultado final
medias
##    mpg    cyl   disp     hp   drat     wt   qsec     vs     am   gear   carb    mpg    cyl   disp 
##  20.09   6.19 230.72 146.69   3.60   3.22  17.85   0.44   0.41   3.69   2.81  20.09   6.19 230.72 
##     hp   drat     wt   qsec     vs     am   gear   carb 
## 146.69   3.60   3.22  17.85   0.44   0.41   3.69   2.81

Gastamos várias linhas para fazer essa simples operação. Como já vimos, é bastante fácil fazer isso no R com apenas uma linha:

sapply(mtcars, mean)
##    mpg    cyl   disp     hp   drat     wt   qsec     vs     am   gear   carb    mpg    cyl   disp 
##  20.09   6.19 230.72 146.69   3.60   3.22  17.85   0.44   0.41   3.69   2.81  20.09   6.19 230.72 
##     hp   drat     wt   qsec     vs     am   gear   carb 
## 146.69   3.60   3.22  17.85   0.44   0.41   3.69   2.81

Imagine que não existisse a função sapply() no R. Se quiséssemos aplicar outra função para cada coluna, teríamos que copiar e colar todo o código novamente, certo?

Sim, você poderia fazer isso, mas não seria uma boa prática. Neste caso, como já vimos, o ideal seria criar uma função.

Façamos, portanto, uma função que nos permita aplicar uma fução arbitrária nas colunas de um data.frame.

meu_sapply <- function(x, funcao){

  n <- length(x)

  resultado <- numeric(n)

  names(resultado) <- names(x)

  for(i in seq_along(x)){
    resultado[i] <- funcao(x[[i]])
  }

  return(resultado)
}

Perceba que ficou bastante simples percorrer todas as colunas de um data.frame para aplicar a função que você quiser:

meu_sapply(mtcars, mean)
##    mpg    cyl   disp     hp   drat     wt   qsec     vs     am   gear   carb    mpg    cyl   disp 
##  20.09   6.19 230.72 146.69   3.60   3.22  17.85   0.44   0.41   3.69   2.81  20.09   6.19 230.72 
##     hp   drat     wt   qsec     vs     am   gear   carb 
## 146.69   3.60   3.22  17.85   0.44   0.41   3.69   2.81

meu_sapply(mtcars, sd)
##    mpg    cyl   disp     hp   drat     wt   qsec     vs     am   gear   carb    mpg    cyl   disp 
##   6.03   1.79 123.94  68.56   0.53   0.98   1.79   0.50   0.50   0.74   1.62   6.03   1.79 123.94 
##     hp   drat     wt   qsec     vs     am   gear   carb 
##  68.56   0.53   0.98   1.79   0.50   0.50   0.74   1.62

meu_sapply(mtcars, max)
##   mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb   mpg   cyl  disp    hp  drat 
##  33.9   8.0 472.0 335.0   4.9   5.4  22.9   1.0   1.0   5.0   8.0  33.9   8.0 472.0 335.0   4.9 
##    wt  qsec    vs    am  gear  carb 
##   5.4  22.9   1.0   1.0   5.0   8.0

meu_sapply(mtcars, min)
##  mpg  cyl disp   hp drat   wt qsec   vs   am gear carb  mpg  cyl disp   hp drat   wt qsec   vs   am 
## 10.4  4.0 71.1 52.0  2.8  1.5 14.5  0.0  0.0  3.0  1.0 10.4  4.0 71.1 52.0  2.8  1.5 14.5  0.0  0.0 
## gear carb 
##  3.0  1.0

É isso o que as funções da família apply são: são funções que fazem loops para você. Elas automaticamente cuidam de toda a parte chata do loop como, por exemplo, criar um objeto de tamanho correto para pré-alocar os resultados. Além disso, em grande parte das vezes essas funções serão mais eficientes do que se você mesmo fizer a implementação.

Por curiosidade, vamos comparar a eficiência do sapply() do R com meu_sapply()

microbenchmark(sapply(mtcars, mean), meu_sapply(mtcars, mean))
## Unit: microseconds
##                      expr min  lq mean median  uq max neval cld
##      sapply(mtcars, mean)  98 104  113    113 121 180   100  a 
##  meu_sapply(mtcars, mean) 239 275  286    285 294 360   100   b

Exercícios

As funções que você irá implementar aqui, usando for(), serão até mais de 100 vezes mais lentas do que as funções nativas do R. Estes exercícios são para você treinar a construção de loops, um pouco de lógica de programação, e entender o que as funções do R estão fazendo – de maneira geral – por debaixo dos panos.

1) Crie uma função que encontre o máximo de um vetor (use for() na sua função). Compare os resultados e a performance de sua implementação com a função max() do R. Sua função é quantas vezes mais lenta?

2) Crie uma função que calcule o fatorial de n (use for() na sua função). Compare os resultados e a performance de sua implementação com a função factorial() do R. Sua função é quantas vezes mais lenta?

3) Crie uma função que calcule a soma de um vetor (use for() na sua função). Compare os resultados e a performance de sua implementação com a função sum() do R. Sua função é quantas vezes mais lenta?

4) Crie uma função que calcule a soma acumulada de um vetor (use for() na sua função). Compare os resultados e a performance de sua implementação com a função cumsum() do R. Sua função é quantas vezes mais lenta?

Respostas

Criando vetor aleatório para comparar as funções:

# cria vetor para comparar resultados
set.seed(123)
x <- rnorm(100)

# Pacote para comparar resultados 
library(microbenchmark)

Resposta sugerida ex-1:

# 1) loop para encontrar máximo

max_loop <- function(x){
  max <- x[1]

  for(i in 2:length(x)){
    if(x[i] > max){
      max <- x[i]
    }

  }
  return(max)
}

all.equal(max(x), max_loop(x))
## [1] TRUE

microbenchmark(max(x), max_loop(x))
## Unit: nanoseconds
##         expr   min    lq  mean median    uq    max neval cld
##       max(x)   378   544   701    594   672   8366   100  a 
##  max_loop(x) 83031 85970 91228  88492 94796 156594   100   b

Resposta sugerida ex-2:

# 2) loop para fatorial

fatorial <- function(n){
  fat <- 1
  for(i in 1:n){
    fat <- fat*i
  }
  return(fat)
}

all.equal(factorial(10), fatorial(10))
## [1] TRUE

microbenchmark(factorial(10), fatorial(10))
## Unit: nanoseconds
##           expr  min   lq mean median   uq   max neval cld
##  factorial(10)  323  381  514    464  552  4755   100  a 
##   fatorial(10) 3207 3612 4820   3738 3955 29361   100   b

Resposta sugerida ex-3:

# 3) loop para soma 

soma <- function(x){

  n <- length(x)

  soma <- numeric(n)

  soma <- x[1]

  for(i in 2:n){
    soma <- x[i] + soma
  }

  return(soma)
}

all.equal(soma(x), sum(x))
## [1] TRUE

microbenchmark(sum(x), soma(x))
## Unit: nanoseconds
##     expr   min    lq  mean median    uq   max neval cld
##   sum(x)   351   474   662    567   642  8938   100  a 
##  soma(x) 42717 46671 50345  51072 52788 85080   100   b

Resposta sugerida ex-4:

# 4) loop para soma acumulada

soma_acumulada <- function(x){

  n <- length(x)

  soma <- numeric(n)

  soma[1] <- x[1]

  for(i in 2:n){
    soma[i] <- x[i] + soma[i-1]
  }

  return(soma)
}

all.equal(soma_acumulada(x), cumsum(x))
## [1] TRUE

microbenchmark(cumsum(x), soma_acumulada(x))
## Unit: nanoseconds
##               expr    min     lq   mean median     uq    max neval cld
##          cumsum(x)    543    616    852    875    942   4625   100  a 
##  soma_acumulada(x) 128217 139040 145288 143372 149446 184268   100   b

Manipulação de Textos – Parte 1


***

Parte do livro Introdução à análise de dados com R.  Este trabalho está em andamento, o texto é bastante preliminar e sofrerá muitas alterações. 

Quer fazer sugestões? Deixe um comentário abaixo ou, se você sabe utilizar o github, acesse aqui.

Não copie ou reproduza este material sem autorização.

Volte para ver atualizações!

***

Criando textos

No R, textos são representados por vetores do tipo character. Você pode criar manualmente um elemento do tipo character colocando o texto entre aspas, podendo ser tanto aspas simples (‘texto’) quanto aspas duplas (“texto”).

# criando um vetor de textos
# aspas simples
x1 <- 'texto 1'

# aspas duplas
x2 <- "texto 2"

Como já vimos, para saber se um objeto é do tipo texto você pode utilizar a função is.character() e também é possível converter objetos de outros tipos para textos utilizando a função as.character().

# criando um vetor de inteiros
x3 <- 1:10

# É texto? Não.
is.character(x3)
## [1] FALSE
# Convertendo para texto
x3 <- as.character(x3)

# Agora é texto? Sim.
is.character(x3)
## [1] TRUE

Operações com textos

Operações como ordenação e comparações são definidas para textos. A ordenação de um texto é feita de maneira lexicográfica, tal como em um dicionário.

# ordenação de letras
sort(c("c", "d", "a", "f"))
## [1] "a" "c" "d" "f"
# ordenação de palavras
# tal como um dicionário
sort(c("cor", "casa", "árvore", "zebra", "branco", "banco"))
## [1] "árvore" "banco"  "branco" "casa"   "cor"    "zebra"

Como a comparação é lexicográfica, é preciso tomar alguns cuidados. Por exemplo, o texto “2” é maior do que o texto “100”. Se por acaso seus números forem transformados em texto, você não vai receber uma mensagem de erro na comparação "2" > "100" mas sim um resultado errado: TRUE.

# CUIDADO!
2   >  100
## [1] FALSE
"2" > "100"
## [1] TRUE
# b > a
"b" > "a"
## [1] TRUE
# A > a
"A" > "a"
## [1] TRUE
# casa > banana
"casa" > "banana"
## [1] TRUE

Imprimindo textos

Se você estiver usando o R de modo interativo, chamar o objeto fará com que ele seja exibido na tela usando print().

# Imprime texto na tela
print(x1)
## [1] "texto 1"
# Quando em modo interativo
# Equivalente a print(x1)
x1
## [1] "texto 1"

Se você não estiver usando o R de modo interativo — como ao dar source() em um script ou dentro de um loop — é preciso chamar explicitamente uma função que exiba o texto na tela.

# sem print não acontece nada
for(i in 1:3) i

# com print o valor de i é exibido
for(i in 1:3) print(i)
## [1] 1
## [1] 2
## [1] 3

Existem outras opções para “imprimir” e formatar textos além do print(). Uma função bastante utilizada para exibir textos na tela é a função cat() (concatenate and print).

cat(x1)
## texto 1
cat("A função cat exibe o texto sem aspas:", x1)
## A função cat exibe o texto sem aspas: texto 1

Por padrão, cat() separa os textos com um espaço em branco, mas é possível alterar este comportamento com o argumento sep.

cat(x1, x2)
## texto 1 texto 2
cat(x1, x2, sep = " - ")
## texto 1 - texto 2

Outra funções úteis são sprintf() e format(), principalmente para formatar e exibir números. Para mais detalhes sobre as funções, olhar a ajuda ?sprintf e ?format.

# %.2f (float, 2 casas decimais)
sprintf("R$ %.2f", 312.12312312)
## [1] "R$ 312.12"
# duas casas decimais, separador de milhar e decimal
format(10500.5102, nsmall=2, big.mark=".", decimal.mark=",")
## [1] "10.500,51"

Caracteres especiais

Como fazemos para gerar um texto com separação entre linhas no R? Criemos a separação de linhas manualmente para ver o que acontece:

texto_nova_linha <- "texto
com nova linha"

texto_nova_linha
## [1] "texto\ncom nova linha"

Note que aparece um \n no meio do texto. Isso é um caractere especial: \n simboliza justamente uma nova linha. Quando você exibe um texto na tela com print(), caracteres especiais não são processados e aparecem de maneira literal. Já se você exibir o texto na tela usando cat(), os caracteres especiais serão processados. No nosso exemplo, o \n será exibido como uma nova linha.

# print: \n aparece literalmente
print(texto_nova_linha)
## [1] "texto\ncom nova linha"
# cat: \n aparece como nova linha
cat(texto_nova_linha)
## texto
## com nova linha

Caracteres especiais são sempre “escapados” com a barra invertida \ . Além da nova linha (\n), outros caracteres especiais recorrentes são o tab (\t) e a própria barra invertida, que precisa ela mesma ser escapada (\\). Vejamos alguns exemplos:

cat("colocando uma \nnova linha")
## colocando uma 
## nova linha
cat("colocando um \ttab")
## colocando um     tab
cat("colocando uma \\ barra")
## colocando uma \ barra
cat("texto com novas linhas e\numa barra no final\n\\")
## texto com novas linhas e
## uma barra no final
## \

Para colocar aspas simples ou duplas dentro do texto há duas opções. A primeira é alternar entre as aspas simples e duplas, uma para definir o objeto do tipo character e a outra servido literalmente como aspas.

# Aspas simples dentro do texto
aspas1 <- "Texto com 'aspas' simples dentro"
aspas1 
## [1] "Texto com 'aspas' simples dentro"
# Aspas duplas dentro do texto
aspas2  <- 'Texto com "aspas" duplas dentro'
cat(aspas2)
## Texto com "aspas" duplas dentro

Outra opção é colocar as aspas como caracter expecial. Neste caso, não é preciso alternar entre aspas simples e duplas.

aspas3 <- "Texto com \"aspas\" duplas"
cat(aspas3)
## Texto com "aspas" duplas
aspas4 <- 'Texto com \'aspas\' simples'
cat(aspas4)
## Texto com 'aspas' simples

Utilidade das funções de exibição

Qual a utilidade de funções que exibam coisas na tela?

Um caso bastante comum é exibir mensagens durante a execução de alguma rotina ou função. Por exemplo, você pode exibir o percentual de conclusão de um loop a cada 25 rodadas:

for(i in 1:100){ 

  # imprime quando o resto da divisão
  # de i por 25 é igual a 0
  if(i %% 25 == 0){
    cat("Executando: ", i, "%\n", sep = "")
  }

  # alguma rotina
  Sys.sleep(0.01)
}
## Executando: 25%
## Executando: 50%
## Executando: 75%
## Executando: 100%

Outro uso frequente é criar métodos de exibição para suas próprias classes. Vejamos um exemplo simples de uma fução base do R, a função rle(), que computa tamanhos de sequências repetidas de valores em um vetor. O resultado da função é uma lista, mas ao exibirmos o objeto na tela, o print não é igual ao de uma lista comum:

x <- rle(c(1,1,1,0))

# resultado é uma lista
str(x)
## List of 2
##  $ lengths: int [1:2] 3 1
##  $ values : num [1:2] 1 0
##  - attr(*, "class")= chr "rle"
# print do objeto na tela 
# não é como uma lista comum
x
## Run Length Encoding
##   lengths: int [1:2] 3 1
##   values : num [1:2] 1 0
# tirando a classe do objeto
# veja que o print agora é como uma lista comum
unclass(x)
## $lengths
## [1] 3 1
## 
## $values
## [1] 1 0

Isso ocorre porque a classe rle tem um método de print próprio, print.rle():

print.rle <- function (x, digits = getOption("digits"), prefix = "", ...) 
{
    if (is.null(digits)) 
        digits <- getOption("digits")
    cat("", "Run Length Encoding\n", "  lengths:", sep = prefix)
    utils::str(x$lengths)
    cat("", "  values :", sep = prefix)
    utils::str(x$values, digits.d = digits)
    invisible(x)
}

Tamanho do texto

A função nchar() retorna o número de caracteres de um elemento do tipo texto. Note que isso é diferente da função length() que retorna o tamanho do vetor.

# O vetor x1 tem apenas um elemento
length(x1)
## [1] 1
# O elemento do vetor x1 tem 7 caracteres
# note que espaços em brancos contam
nchar(x1) 
## [1] 7

A função nchar() é vetorizada.

# vetor do tipo character
y <- c("texto 1", "texto 11")

# vetor tem dois elementos
length(y)
## [1] 2
# O primeiro elemento tem 7 caracteres
# O segundo 8.
nchar(y) # vetorizada
## [1] 7 8

Manipulando textos

Manipulação de textos é uma atividade bastante comum na análise de dados. O R possui uma série de funções para isso e suporta o uso de expressões regulares. Nesta seção veremos exemplos simples das principais funções de manipulação de textos. Na próxima seção abordaremos um pouco de expressões regulares.

Colando (ou concatenando) textos

A função paste() é uma das funções mais úteis para manipulação de textos. Como o próprio nome diz, ela serve para “colar” textos.

# Colando textos
tipo <- "Apartamento"
bairro <- "Asa Sul"
texto <- paste(tipo,"na", bairro )
texto
## [1] "Apartamento na Asa Sul"

Por default, paste() separa os textos com um espaço em branco. Você pode alterar isso modificando o argumento sep. Caso não queira nenhum espaço entre as strings, basta definir sep = "" ou utilizar a função paste0(). Como usual, todas essas funções são vetorizadas.

# separação padrão
paste("x", 1:5)
## [1] "x 1" "x 2" "x 3" "x 4" "x 5"
# separando por ponto
paste("x", 1:5, sep=".")
## [1] "x.1" "x.2" "x.3" "x.4" "x.5"
# sem separação
paste("x", 1:5, sep ="")
## [1] "x1" "x2" "x3" "x4" "x5"
# sem separação, usando paste0.
paste0("x", 1:5)
## [1] "x1" "x2" "x3" "x4" "x5"

Note que foram gerados 5 elementos diferentes nos exemplos acima. É possível “colar” todos os elementos em um único texto com a opção collapse().

paste("x", 1:5, sep="", collapse=" ")
## [1] "x1 x2 x3 x4 x5"

Separando textos

Outra atividade frequente em análise de dados é separar um texto em elementos diferentes. Por exemplo, suponha que você tenha que trabalhar com um conjunto de números, mas que eles estejam em um formato de texto separados por ponto e vírgula:

dados <- "1;2;3;4;5;6;7;8;9;10"
dados
## [1] "1;2;3;4;5;6;7;8;9;10"

Com a função strsplit() é fácil realizar essa tarefa:

dados_separados <- strsplit(dados, split=";")
dados_separados
## [[1]]
##  [1] "1"  "2"  "3"  "4"  "5"  "6"  "7"  "8"  "9"  "10"

Note que o resultado da função é uma lista. Agora é possível converter os dados em números e trabalhar normalmente.

# convertendo o resultado em número
dados_separados <- as.numeric(dados_separados[[1]])

# agora é possível trabalhar com os números
# média
mean(dados_separados)
## [1] 5.5
# soma
sum(dados_separados)
## [1] 55

Encontrando partes de um texto

Quando você estiver trabalhando com suas bases de dados, muitas vezes será preciso encontrar certas palavras ou padrões dentro do texto. Por exemplo, imagine que você tenha uma base de dados de aluguéis de apartamentos e você gostaria de encontrar imóveis em um certo endereço. Vejamos este exemplo com dados online de aluguel em Brasília.

# Carrega arquivo de anúncios de aluguel (2014)
arquivo <- url("https://dl.dropboxusercontent.com/u/44201187/aluguel.rds")
con <- gzcon(arquivo)
aluguel <- readRDS(con)
close(con)

Vejamos a estrutura da nossa base de dados:

str(aluguel)
## 'data.frame':    2612 obs. of  5 variables:
##  $ bairro  : chr  "Asa Norte" "Asa Norte" "Sudoeste" "Asa Norte" ...
##  $ endereco: chr  "CLN 310 BLOCO A " "SCRN 716 BLOCO G ENT. 26 3º ANDAR" "QMSW 06 ED.STUDIO IN" "CLN 406 BLOCO D - ED. POP CENTER (APARTAMENTO)" ...
##  $ quartos : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ m2      : num  22.9 26 30 30 30 30 30 30 28 30 ...
##  $ preco   : num  650 750 800 800 800 820 850 850 850 860 ...
##  - attr(*, "na.action")=Class 'omit'  Named int [1:120] 15943 16001 17264 17323 18600 18659 19935 19996 21278 22617 ...
##   .. ..- attr(*, "names")= chr [1:120] "15943" "16001" "17264" "17323" ...

Temos mais de 2 mil anúnciso, como encontrar aqueles apartamentos que queremos, como, por exemplos, os que contenham “CLN 310” no endereço? Neste caso você pode utilizar a função grep() para encontrar padrões dentro do texto. A função retornará o índice das observações que contém o texto:

busca_indice <- grep(pattern = "CLN 310", aluguel$endereco)
busca_indice
## [1]    1 1812
aluguel[busca_indice, ]
##         bairro                            endereco quartos   m2 preco
## 1    Asa Norte                    CLN 310 BLOCO A        1 22.9   650
## 1812 Asa Norte CLN 310 BLOCO E ENTRADA 52 SALA 216       0 30.0   900

Uma variante da função grep() é a função grepl(), que realiza a mesma coisa, mas ao invés de retornar um índice numérico, retorna um vetor lógico:

busca_logico <- grepl(pattern = "CLN 310", aluguel$endereco)
str(busca_logico)
##  logi [1:2612] TRUE FALSE FALSE FALSE FALSE FALSE ...
aluguel[busca_indice, ]
##         bairro                            endereco quartos   m2 preco
## 1    Asa Norte                    CLN 310 BLOCO A        1 22.9   650
## 1812 Asa Norte CLN 310 BLOCO E ENTRADA 52 SALA 216       0 30.0   900

Nossa busca é útil, mas ainda é simples. Quando aprendermos expressões regulares, essas buscas ficarão bem mais poderosas. Lá também aprenderemos outras funções como regexpr(), gregexpr(), regexec() e regmatches().

Substituindo partes de um texto

A função sub() substitui o primeiro padrão (pattern) que encontra:

texto2 <- paste(texto, ", Apartamento na Asa Norte")
texto2
## [1] "Apartamento na Asa Sul , Apartamento na Asa Norte"
# Vamos substituir "apartamento" por "Casa"
# Mas apenas o primeiro caso
sub(pattern = "Apartamento",
    replacement = "Casa",
    texto2) 
## [1] "Casa na Asa Sul , Apartamento na Asa Norte"

Já a função gsub() substitui todos os padrões que encontra:

# Vamos substituir "apartamento" por "Casa"
# Agora em todos os casos
gsub(pattern="Apartamento",
    replacement="Casa",
    texto2)
## [1] "Casa na Asa Sul , Casa na Asa Norte"

Você pode usar as funções sub() e gsub() para “deletar” partes indesejadas do texto, basta colocar como replacement um caractere vazio "". Um exemplo bem corriqueiro, quando se trabalha com com nomes de arquivos, é a remoção das extensões:

# nomes dos arquivos
arquivos <- c("simulacao_1.csv","simulacao_2.csv")

# queremos eliminar a extensão .csv
# note que o ponto precisa ser escapado
nomes_sem_csv <- gsub("\\.csv", "", arquivos)
nomes_sem_csv
## [1] "simulacao_1" "simulacao_2"

Extraindo partes específicas de um texto

Às vezes você precisa extrair apenas algumas partes específicas de um texto, em determinadas posições. Para isso você pode usar as funções substr() e substring().

Para essas funções, você basicamente passa as posições dos caracteres inicial e final que deseja extrair.

# extraindo caracteres da posição 4 à posição 8
x <- "Um texto de exemplo"
substr(x, start = 4, stop = 8)
## [1] "texto"

É possível utilizar essas funções para alterar partes específicas do texto.

# substituindo caracteres da posição 4 à posição 8
substr(x, start = 4, stop = 8) <- "TEXTO"
x
## [1] "Um TEXTO de exemplo"

A principal diferença entre substr() e substring() é que a segunda permite você passar vários valores iniciais e finais:

# pega caracteres de (4 a 8) e de (10 a 11)
substring(x, first = c(4, 10), last = c(8, 11))
## [1] "TEXTO" "de"
# pega caracteres de (1 ao último), (2 ao último) ...
substring("abcdef", first = 1:6)
## [1] "abcdef" "bcdef"  "cdef"   "def"    "ef"     "f"

**** A SEGUIR ****

  • expressões regulares
    • regmatches, regexpr, gregexpr, regexc
  • fuzzy matching
  • stringr