A desigualdade de renda se manteve estável no Brasil? Ou sobre a acurácia das variáveis econômicas IV


Paper do Pedro Souza e Marcelo Medeiros e apresentação do Marcelo Medeiros na UERJ:

Dica do Leo Monastério.

Foda-se a nuance, entrevista com Alvin Roth, erro de medida no desemprego e Machine Learning no Airbnb.


Algumas leituras e vídeos interessantes

– Kieran Healy mandando um fuck nuance. (Abstract: Seriously, fuck it).

– Entrevista de Alvin Roth no Google:

– Sobre a acurácia das variáveis econômicas: quanto é o desemprego da China? Nessa linha, qual é a medida adequada para “desemprego”? Veja uma discussão interessante para o caso dos EUA no Econbrowser.

Como o Airbnb usa Machine Learning?

Estatísticas de homicídio – mais sobre erro de medida.


Qual foi a quantidade de homicídios no EUA em 2010? Três medidas diferentes, com 25% de diferença entre a maior e menor.

12,966, FBI, Crime in the United States 2010.

13,164, FBI, Crime in the United States 2011 (2010 figure).

14,720, Bureau of Justice Statistics (Table 1, based on FBI, Supplementary Homicide Statistics).

16,259, CDC (based on death certificates in the National Vital Statistics System). 

Veja mais no Marginal Revolution.

Para saber mais sobre o assunto, veja no blog também  aqui aqui ,aquiaqui, aqui e aqui.

 

Investimento Estrangeiro Direto no Brasil por Estado (Indústria)


Os dados do Censo de Capitais Estrangeiros no País, em 2010, trouxeram a distribuição do Investimento Estrangeiro Direto (IED) na indústria por Unidade da Federação (UF).

Somente da Indústria? E como foi feita a distribuição? Aqui voltamos ao que já dissemos sobre erro de medida (ver aqui, aqui, aqui e aqui, por exemplo). Distribuir o estoque investimento estrangeiro por UF é algo complicado, sujeito a erros diversos, tanto ao se definir a metodologia, quanto ao se mensurar o valor. No censo de 1995, por exemplo, os dados foram distribuídos por estado “[…] tomando por base o endereço da sede da empresa”. Será que essa é uma boa medida? Depende.

Percebe-se que uma indústria que concentre o grosso da sua estrutura produtiva no Pará, mas que tenha sede em São Paulo, será considerada um investimento nesta última UF.  Se a intenção é medir onde se encontra o centro administrativo, esta medida poderá ser boa. Todavia, se intenção é medir onde se encontram as unidades produtivas, esta medida terá, talvez, distorções significativas. Qual a melhor forma, então, de se distribuírem os investimentos por estado? Pela localização da sede? Pela localização do ativo imobilizado? Pela distribuição dos funcionários?  Particularmente, acho que não existe uma métrica única que se sobressaia às demais – a melhor opção depende do uso que você irá fazer da estatística.

Voltando ao Censo, a pesquisa passou a considerar a distribuição do ativo imobilizado como critério para alocação do IED – e apenas para a indústria . Os declarantes distribuíram percentualmente o seu imobilizado pelos diferentes estados e isso foi utilizado para ponderar o investimento direto pelas UF’s.

Segue abaixo mapa do Brasil com a distribuição do IED da indústria por Unidade Federativa:

IED_UF

 Para aprender a fazer o mapa, veja aqui.

Concentração do Investimento Brasileiro no Exterior e erro de medida


Já que falamos do CBE no post anterior, aproveito para destacar outro dado daquela pesquisa, que muitas vezes passa despercebido: a concentração do Investimento Brasileiro Direto (IBD) no exterior em poucos investidores. Na publicação dos resultados, os declarantes foram separados pelo tamanho de seu investimento, como, por exemplo, investidores que possuem investimentos no exterior de até US$ 1 milhão (a menor categoria) ou investidores que possuem investimentos no exterior maiores do que US$1 bilhão (a maior categoria).

No quadro 2 da publicação, você encontrará a seguinte distribuição, reproduzida no gráfico abaixo (agrupei as duas últimas categorias do quadro). Em vermelho, você tem o percentual de investidores que se encontram naquela faixa de investimento – perceba que quase 70% dos declarantes do CBE têm um investimento menor ou igual a  US$ 1 milhão e que apenas 0,3% dos declarantes possuem investimentos maiores do que US$500 milhões. Já em azul, você encontra o quanto cada uma dessas categorias responde pelo valor total declarado. Note que 0,3% dos declarantes respondem por cerca de 70% dos 356 bilhões de dólares que o Brasil possuía investidos no exterior.

Concentracao IBD

Em outras palavras, a distribuição do IBD tem cauda bastante pesada – poucas observações respondem pela quase totalidade do valor. Além de ilustrar  o grau de concentração deste tipo de investimento , isto tem uma implicação importante com relação ao (provável) erro de medida, e consequentemente, na incerteza dessas estatísticas.

Para tanto, vejamos o quadro 7, que é análogo ao quadro 2, mas faz a separação apenas para a modalidade de IBD participação no capital. Pelo quadro, 32 declarantes respondem por US$ 158 bilhões do estoque total, isto dá, na média, cerca de US$ 5 bilhões por declarante. Agora veja a distribuição da mesma modalidade por país (quadro 3). Em 2012, o maior estoque de IBD participação no capital, segundo o quadro 3 do CBE, estava na Áustria, com cerca de US$ 57 bilhões. Este valor, então, decresce exponencialmente, sendo a média por país mais ou menos US$ 6 bilhões e a mediana US$ 1 bilhão. Perceba que, caso apenas um dos grandes declarantes esteja classificado de forma errada – e considerando, conservadoramente, o valor médio do grupo – no melhor cenário, se o erro for na Áustria, isso responde por 10% do total estimado para aquele país; se for em um país de IBD médio, isso responde por um erro de 83%; e se for em um país de IBD mediano, o valor do erro é cinco vezes maior do que o valor estimado!

Então se, por um lado, o fato de a distribuição estar concentrada em poucos investidores reduz o número de declarantes que o Banco Central precisa investigar para validar grande parte do valor total declarado, por outro, o impacto de apenas um registro errado pode ser bastante significativo. Note a diferença deste tipo de estatística, para, por exemplo, a estimativa da expectativa de vida média do brasileiro – neste caso, vários registros errados dificilmente alterariam o valor médio de forma substancial.

Para finalizar,  uma curiosidade. Veja abaixo os gráficos do logaritmo do valor do investimento (X) contra o logaritmo da probabilidade de o investidor ter investimentos maiores do que X (a linha preta é reta de regressão). Lembra o gráfico de um lei de potência, não?

CBE_ConcentracaoMais sobre este tipo de assunto neste blog aqui.

 

Erro de medida, Precificação de ativos e Prêmio Nobel


Entrevista com Larry Cahoon, estatístico do Censo norte-americano. Destaco a passagem abaixo, em que ele ressalta a importância de se saber sobre a variabilidade de uma estimativa, algo tão ou mais crítico do que saber a própria estimativa. Isto está em linha com o que discutimos acerca da acurácia das variáveis econômicas, aqui, aqui e aqui.

To do good statistics, knowledge of the subject matter it is being applied to is critical. I also learned early on that issues of variance and bias in any estimate are actually more important than the estimate itself. If I don’t know things like the variability inherent in an estimate and the bias issues in that estimate, then I really don’t know very much.

A favorite saying among the statisticians at the Census Bureau where I worked is that the biases are almost always greater than the sampling error. So my first goal is always to understand the data source, the data quality and what it actually measures.

But, I also still have to make decisions based on the data I have. The real question then becomes given the estimate on hand, what I know about the variance of that estimate, and the biases in that estimate, what decision am I going to make.

Se você não tinha seguido a recomendação de acompanhar o blog do Damodaran, seguem alguns posts interessantes que você perdeu:

– Chill, dude: Debt Default  Drama Queens

When the pieces add-up too much: Micro Dreams and Macro Delusions;

– Twitter announces the IPO: Pricing Games Begins, The Valuation, Why a good trade be a bad investment (or vice-versa).

Sobre o prêmio Nobel, saiu tanta coisa na internet que inclusive descobri muitos detalhes interessantes dos trabalhos dos três ganhadores que sequer imaginava. Deixo aqui, para quem ainda não leu, os materiais do Marginal Revolution e do Cochrane.