Data Frames


***

Parte do livro Introdução à análise de dados com R.  Este trabalho está em andamento, o texto é bastante preliminar e sofrerá muitas alterações. 

Quer fazer sugestões? Deixe um comentário abaixo ou, se você sabe utilizar o github, acesse aqui.

Não copie ou reproduza este material sem autorização.

Volte para ver atualizações!

***

Data Frames: seu banco de dados no R

Por que um data.frame?

Até agora temos utilizado apenas dados de uma mesma classe, armazenados ou em um vetor ou em uma matriz. Mas uma base de dados, em geral, é feita de dados de diversas classes diferentes: no exemplo anterior, por exemplo, podemos querer ter uma coluna com os nomes dos funcionários, outra com o sexo dos funcionários, outra com valores… note que essas colunas são de classes diferentes, como textos e números. Como guardar essas informações?

A solução para isso é o data.frame. O data.frame é talvez o formato de dados mais importante do R. No data.frame cada coluna representa uma variável e cada linha uma observação. Essa é a estrutura ideal para quando você tem várias variáveis de classes diferentes em um banco de dados.

Criando um data.frame: data.frame() e as.data.frame()

É possível criar um data.frame diretamente com a função data.frame():

funcionarios <- data.frame(nome = c("João", "Maria", "José"),
                           sexo = c("M", "F", "M"),
                           salario = c(1000, 1200, 1300),
                           stringsAsFactors = FALSE)
funcionarios
##    nome sexo salario
## 1  João    M    1000
## 2 Maria    F    1200
## 3  José    M    1300

Também é coverter outros objetos em um data.frame com a função as.data.frame().

Discutiremos a opção stringsAsFactors = FALSE mais a frente.

Vejamos a estrutura do data.frame. Note que cada coluna tem sua própria classe.

str(funcionarios)
## 'data.frame':    3 obs. of  3 variables:
##  $ nome   : chr  "João" "Maria" "José"
##  $ sexo   : chr  "M" "F" "M"
##  $ salario: num  1000 1200 1300

Nomes de linhas e colunas

O data.frame sempre terá rownames e colnames.

rownames(funcionarios)
## [1] "1" "2" "3"

colnames(funcionarios)
## [1] "nome"    "sexo"    "salario"

Detalhe: a função names() no data.fram trata de suas colunas, pois os elementos fundamentais do data.frame são seus vetores coluna.

names(funcionarios)
## [1] "nome"    "sexo"    "salario"

Não parece tão diferente de uma matriz…

O que ocorreria com o data.frame funcionarios se o transformássemos em uma matriz? Vejamos:

as.matrix(funcionarios)
##      nome    sexo salario
## [1,] "João"  "M"  "1000"
## [2,] "Maria" "F"  "1200"
## [3,] "José"  "M"  "1300"

Perceba que todas as variáveis viraram character! Uma matriz aceita apenas elementos da mesma classe, e é exatamente por isso precisamos de um data.frame neste caso.

Manipulando data.frames como matrizes

Ok, temos mais um objeto do R, o data.frame … vou ter que reaprender tudo novamente? Não! Você pode manipular data.frames como se fossem matrizes!

Praticamente tudo o que vimos para selecionar e modificar elementos em matrizes funciona no data.frame. Podemos selecionar linhas e colunas do nosso data.frame como se fosse uma matriz:

## tudo menos linha 1
funcionarios[-1, ]
##    nome sexo salario
## 2 Maria    F    1200
## 3  José    M    1300

## seleciona primeira linha e primeira coluna (vetor)
funcionarios[1, 1]
## [1] "João"

## seleciona primeira linha e primeira coluna (data.frame)
funcionarios[1, 1, drop = FALSE]
##   nome
## 1 João

## seleciona linha 3, colunas "nome" e "salario"
funcionarios[3 , c("nome", "salario")]
##   nome salario
## 3 José    1300

E também alterar seus valores tal como uma matriz.

## aumento de salario para o João
funcionarios[1, "salario"] <- 1100

funcionarios
##    nome sexo salario
## 1  João    M    1100
## 2 Maria    F    1200
## 3  José    M    1300

Extra do data.frame: selecionando e modificando com $ e [[ ]]

Outras formas alternativas de selecionar colunas em um data.frame são o $ e o [[ ]]:

## Seleciona coluna nome
funcionarios$nome
## [1] "João"  "Maria" "José"

funcionarios[["nome"]]
## [1] "João"  "Maria" "José"

## Seleciona coluna salario
funcionarios$salario
## [1] 1100 1200 1300

funcionarios[["salario"]]
## [1] 1100 1200 1300

Tanto o $ quanto o [[ ]] sempre retornam um vetor como resultado.

Também é possível alterar a coluna combinando $ ou [[ ]] com <-:

## outro aumento para o João
funcionarios$salario[1] <- 1150

## equivalente
funcionarios[["salario"]][1] <- 1150
funcionarios
##    nome sexo salario
## 1  João    M    1150
## 2 Maria    F    1200
## 3  José    M    1300

Extra do data.frame: retornando sempre um data.frame com [ ]

Se você quiser garantir que o resultado da seleção será sempre um data.frame use drop = FALSE ou selecione sem a vírgula:

## Retorna data.frame
funcionarios[ ,"salario", drop = FALSE]
##   salario
## 1    1150
## 2    1200
## 3    1300

## Retorna data.frame
funcionarios["salario"]
##   salario
## 1    1150
## 2    1200
## 3    1300

Tabela resumo: selecionando uma coluna em um data.frame

Resumindo as formas de seleção de uma coluna de um data.frame.

screen-shot-2017-02-07-at-12-02-02-am

Criando colunas novas

Há diversas formas de criar uma coluna nova em um data.frame. O principal segredo é o seguinte: faça de conta que a coluna já exista, selecione ela com $, [,] ou [[]] e atribua o valor que deseja.

Para ilustrar, vamos adicionar ao nosso data.frame funcionarios mais três colunas.

Com $:

funcionarios$escolaridade <- c("Ensino Médio", "Graduação", "Mestrado")

Com [ , ]:

funcionarios[, "experiencia"] <- c(10, 12, 15)

Com [[ ]]:

funcionarios[["avaliacao_anual"]] <- c(7, 9, 10)

Uma última forma de adicionar coluna a um data.frame é, tal como uma matriz, utilizar a função cbind() (column bind).

funcionarios <- cbind(funcionarios,
                      prim_emprego = c("sim", "nao", "nao"),
                      stringsAsFactors = FALSE)

Vejamos como ficou nosso data.frame com as novas colunas:

funcionarios
##    nome sexo salario escolaridade experiencia avaliacao_anual prim_emprego
## 1  João    M    1150 Ensino Médio          10               7          sim
## 2 Maria    F    1200    Graduação          12               9          nao
## 3  José    M    1300     Mestrado          15              10          nao

E agora, temos colunas demais, como remover algumas delas?

Removendo colunas

A forma mais fácil de remover coluna de um data.fram é atribuir o valor NULL a ela:

## deleta coluna prim_emprego
funcionarios$prim_emprego <- NULL

Mas a forma mais segura e universal de remover qualquer elemento de um objeto do R é selecionar tudo exceto aquilo que você não deseja. Isto é, selecione todas colunas menos as que você não quer e atribua o resultado de volta ao seu data.frame:

## deleta colunas 4 e 6
funcionarios <- funcionarios[, c(-4, -6)]

Adicionando linhas

Uma forma simples de adicionar linhas é atribuir a nova linha com <-. Mas cuidado! O que irá acontecer com o data.frame com o código abaixo?

## CUIDADO!
funcionarios[4, ] <- c("Ana", "F", 2000,  15)

Note que nosso data.frame inteiro se transformou em texto! Você sabe explicar por que isso aconteceu? relembrar coerção

str(funcionarios)
## 'data.frame':    4 obs. of  4 variables:
##  $ nome       : chr  "João" "Maria" "José" "Ana"
##  $ sexo       : chr  "M" "F" "M" "F"
##  $ salario    : chr  "1150" "1200" "1300" "2000"
##  $ experiencia: chr  "10" "12" "15" "15"

Antes de prosseguir, transformemos as colunas salario e experiencia em números novamente:

funcionarios$salario <- as.numeric(funcionarios$salario) 

funcionarios$experiencia <- as.numeric(funcionarios$experiencia)

Se os elementos forem de classe diferente, use a função data.frame para evitar coerção:

funcionarios[4, ] <- data.frame(nome = "Ana", sexo = "F",
                                salario = 2000, experiencia = 15,
                                stringsAsFactors = FALSE)

Também é possível adicionar linhas com rbind():

rbind(funcionarios,
      data.frame(nome = "Ana", sexo = "F",
                 salario = 2000,  experiencia = 15,
                 stringsAsFactors = FALSE))

Atenção! Não fique aumentando um data.frame de tamanho adicionando linhas ou colunas. Sempre que possível pré-aloque espaço!

Removendo linhas

Para remover linhas, basta selecionar apenas aquelas linhas que você deseja manter:

## remove linha 4 do data.frame
funcionarios <- funcionarios[-4, ]
## remove linhas em que salario <= 1150
funcionarios <- funcionarios[funcionarios$salario > 1150, ]

Filtrando linhas com vetores logicos

Relembrando: se passarmos um vetor lógico na dimensão das linhas, selecionamos apenas aquelas que são TRUE. Assim, por exemplo, se quisermos selecionar aquelas linhas em que a coluna salario é maior do que um determinado valor, basta colocar esta condição como filtro das linhas:

## Apenas linhas com salario > 1000
funcionarios[funcionarios$salario > 1000, ]
##    nome sexo salario experiencia
## 2 Maria    F    1200          12
## 3  José    M    1300          15

## Apenas linhas com sexo == "F"
funcionarios[funcionarios$sexo == "F", ]
##    nome sexo salario experiencia
## 2 Maria    F    1200          12

Funções de conveniência: subset()

Uma função de conveniência para selecionar linhas e colunas de um data.frame é a função subset(), que tem a seguinte estrutura:

subset(nome_do_data_frame,
       subset = expressao_logica_para_filtrar_linhas,
       select = nomes_das_colunas,
       drop   = simplicar_para_vetor?)

Vejamos alguns exemplos:

## funcionarios[funcionarios$sexo == "F",]
subset(funcionarios, sexo == "F")
##    nome sexo salario experiencia
## 2 Maria    F    1200          12

## funcionarios[funcionarios$sexo == "M", c("nome", "salario")]
subset(funcionarios, sexo == "M", select = c("nome", "salario"))
##   nome salario
## 3 José    1300

Funções de conveniência: with

A função with() permite que façamos operações com as colunas do data.frame sem ter que ficar repetindo o nome do data.frame seguido de $ , [ , ] ou [[]] o tempo inteiro.

Para ilustrar:

## Com o with
with(funcionarios, (salario^3 - salario^2)/log(salario))
## [1] 2.4e+08 3.1e+08

## Sem o with
(funcionarios$salario^3 - funcionarios$salario^2)/log(funcionarios$salario)
## [1] 2.4e+08 3.1e+08

Quatro formas de fazer a mesma coisa (pense em outras formas possíveis):

subset(funcionarios, sexo == "M", select = "salario", drop = TRUE)
## [1] 1300

with(funcionarios, salario[sexo == "M"])
## [1] 1300

funcionarios$salario[funcionarios$sexo == "M"]
## [1] 1300

funcionarios[funcionarios$sexo == "M", "salario"]
## [1] 1300

Aplicando funções no data.frame: sapply e lapply, funções nas colunas (elementos)

Outras duas funções bastante utilizadas no R são as funções sapply() e lapply().

  • As funções sapply e lapply aplicam uma função em cada elemento de um objeto.
  • Como vimos, os elementos de um data.frame são suas colunas. Deste modo, as funções sapply e lapply aplicam uma função nas colunas de um data.frame.
  • A diferença entre uma e outra é que a primeira tenta simplificar o resultado enquanto que a segunda sempre retorna uma lista.

Testando no nosso data.frame:

sapply(funcionarios[3:4], mean)
##     salario experiencia
##        1250          14

lapply(funcionarios[3:4], mean)
## $salario
## [1] 1250
##
## $experiencia
## [1] 14

Filtrando variáveis antes de aplicar funções: filter()

Como data.frames podem ter variáveis de classe diferentes, muitas vezes é conveniente filtrar apenas aquelas colunas de determinada classe (ou que satisfaçam determinada condição). A função Filter() é uma maneira rápida de fazer isso:

# seleciona apenas colunas numéricas
Filter(is.numeric, funcionarios)
##   salario experiencia
## 2    1200          12
## 3    1300          15

# seleciona apenas colunas de texto
Filter(is.character, funcionarios)
##    nome sexo
## 2 Maria    F
## 3  José    M

Juntando filter() com sapply() você pode aplicar funções em apenas certas colunas, como por exemplo, calcular a média e máximo apenas nas colunas numéricas do nosso data.frame:

sapply(Filter(is.numeric, funcionarios), mean)
##     salario experiencia
##        1250          14

sapply(Filter(is.numeric, funcionarios), max)
##     salario experiencia
##        1300          15

Manipulando data.frames

Ainda temos muita coisa para falar de manipulação de data.framese isso merece um espaço especial. Veremos além de outras funções base do R alguns pacotes importantes como dplyr, reshape2 e tidyr em uma seção separada.

Replicação em economia


John Cochrane soltou um post bacana sobre replicação em economia. Vale a pena conferir.

On replication in economics. Just in time for bar-room discussions at the annual meetings.

“I have a truly marvelous demonstration of this proposition which this margin is too narrow to contain.” -Fermat

“I have a truly marvelous regression result, but I can’t show you the data and won’t even show you the computer program that produced the result” – Typical paper in economics and finance.

The problem 

Science demands transparency. Yet much research in economics and finance uses secret data. The journals publish results and conclusions, but the data and sometimes even the programs are not available for review or inspection.  Replication, even just checking what the author(s) did given their data, is getting harder.

Quite often, when one digs in, empirical results are nowhere near as strong as the papers make them out to be.

I have seen many examples of these problems, in papers published in top journals. Many facts that you think are facts are not facts. Yet as more and more papers use secret data, it’s getting harder and harder to know.

The solution is pretty obvious: to be considered peer-reviewed “scientific” research, authors should post their programs and data. If the world cannot see your lab methods, you have an anecdote, an undocumented claim, you don’t have research. An empirical paper without data and programs is like a theoretical paper without proofs.

(continue lendo no blog do Cochrane)

E se os economistas escrevessem os cartões de Natal?


Com fim de ano apertado, e para manter a tradição: reciclagem do post de Natal!

Análise Real

Fim de ano e festas chegando, nada mais justo do que aproveitar para reciclar rever posts antigos.

Para o Natal, nada melhor do que repetir o post do ano passado, mas com uma atualização para não dizer que sou completamente preguiçoso.

*** Atualização para 2013 ***

– Entrevista com o “Scrooge” economist  Waldfogel (para saber quem é Waldfogel, leia o post abaixo);

– Como dito no post do ano passado (abaixo), nem todos os economistas são os estraga-prazeres das trocas de presentes natalinas. Na verdade, a maioria (54%) parece não ser.

– Seguindo o link anterior: e se os economistas escrevessem os cartões de Natal? Segue exemplo da grande sensibilidade sobre a alma humana que um economista pode ter.

natal

*** Post de 2012 ***

É fim de ano. Provavelmente, você foi convidado para participar de um amigo-oculto da sua empresa. Você, animado, comprou aquele vinho bacana… mas, voltou com…

Ver o post original 446 mais palavras