McGuiver colombiano, transplante de rim e seqüências matemáticas


Compartilhando algumas leituras.

Acemoglu e Robinson (doravante A&R neste blogue) sobre o McGuiver colombiano, na cidade de La Danta.

Alvin Roth novamente aplicando a economia em problemas reais (transplante de rim).

Landsburg e o supra-sumo da procrastinação acadêmica produtiva (quer dizer, ainda não sei se bate de frente com Ai se eu te pego em grego clássico).

Posto de gasolina não pode… mas firma de advocacia pode.


Vez ou outra vemos revolta popular ou governamental contra um suposto cartel feito pelos postos de gasolina.

Mas o que eu gostaria mesmo de ver é uma revolta contra isso aqui. A OAB do DF fixa preço mínimo para honorários. Impressiona o artigo quarto:

Art. 4o É lícito ao advogado contratar valor superior ao previsto na Tabela. Cumpre, entretanto, obrigatoriamente, ao advogado, em atendimento ao dever de zelar pela dignidade da profissão, observar os limites mínimos aqui fixados, não contratando honorários a eles inferiores (concorrência desleal), sob pena das sanções legais.

Busquei na internet e vi que o Taufick comentou o caso. E que já existe processo correndo no CADE.

Teoria dos jogos na prática


Há algum tempo tinha lido esta matéria bem legal da “The Economist” e sempre me esquecia de compartilhar, agora vai. Ela menciona várias aplicações de teoria dos jogos. Um dos autores mencionados é o Bueno de Mesquita, que já apresentou uma palestra no TED. Ainda não tive tempo de ler os livros, tampouco os artigos do autor, mas já ouvi boas referências sobre a “Selectorate Theory” e críticas bastante incisivas ao “The Predictioneer’s game“. O pé atrás com relação ao Bueno de Mesquita surge no próprio vídeo do TED: 90% de acurácia é simplesmente bom demais para ser verdade. Mas ele não deixa de ser polêmico e incitar a curiosidade sobre os trabalhos que presta em sua consultoria privada. Se tem gente pagando por suas previsões, não é provável que todos sejam otários e que elas não sejam de alguma valia (mas, lógico, improvável não quer dizer impossível).

Também gostaria de compartilhar o site e o blog do Alvin Roth. O autor faz um uso bem interessante da teoria dos jogos para o programa de matching dos residentes de medicina nos EUA (no Brasil, lembro do artigo da Marilda Sotomayor sobre matching na pós-graduação em economia). Ele também trabalha com matching para doações de órgãos quando o mercado, por algum motivo, não é permitido, entre outras aplicações. Aproveito igualmente para compartilhar um link de uma matéria, um pouco antiga, mas bacana que havia lido sobre o Alvin Roth no Boston Globe. Para quem buscava exemplos de aplicações para teoria dos jogos, os links acima têm material para muitos dias de diversão.

Ai se eu te pego em grego clássico – por Rodrigo Peñaloza


Se produz mais do que economia nos arredores do departamento de economia da UnB.

ἆ, ἢν δὲ σε ἁρπάζω
Michel Teló – traduzida para o grego clássico por Rodrigo Andrés de Souza Peñaloza
οἴμοι, οἴμοι
οὕτω γὰρ με κτείνεις
ἢν δὲ σε ἁρπάζω, ἆ, ἢν δὲ σε ἁρπάζω

ἡδεῖα, ἡδεῖα
οὕτω δὲ με κτείνεις
ἢν δὲ σε ἁρπάζω, ἆ, ἢν δὲ σε ἁρπάζω

ἐν νυκτὶ ἐν τηῖ ὄρχησει
οἱ φὶλοι ὠρχήσαντο
τὴν κὰλιστην πὰρθενον εἶδον
ἐκινδύνευσα καὶ διαλεξάμεθα.

Lá também se encontram Fagner e Chico Buarque em latim.

Qual é o problema com modelos? Nenhum, o problema é com quem os interpreta…


… como realidade e não como metáforas.

Como diz Edward Leamer: “It is difficult to train a computer to understand a metaphor, and it is likewise difficult to train our students to understand the metaphors of economics, our models. Our students do what anyone unfamiliar with a language does: they take the models literally.” Mas não deviam.

Então, se algum economista te mostrar um modelo de concorrência perfeita, não é para você pensar que os economistas acreditam, nem tampouco para você acreditar que os preços são dados, que para existir concorrência teria de haver milhares de empresas sem poder de mercado, que não existe atividade empresarial fundamentada no erro e na descoberta… interpretar um modelo de concorrência perfeita dessa forma, usando uma analogia de Leamer, é a mesma coisa de olhar um mapa em que a avenida é desenhada na cor vermelha e achar que a avenida é de fato vermelha. Corolário disto: não é para você pegar um modelo e aplicá-lo a toda e qualquer situação – o trabalho do economista é justamente identificar o momento apropriado de utilizá-lo.

Freakonomics revisitado e o efeito do Tea Party


Compartilhando algumas leituras:

Andrew Gelman discute com Stephen Dubner sobre suas críticas ao Freakonomics. O artigo original com as críticas, que são simples mas muito pertinentes, pode ser conferido aqui.

Mankiw dá a dica de um artigo que usa dias chuvosos como variável instrumental para capturar o efeito político do Tea Party.

O poder da estatística, ou como você é tão previsível.


Nos EUA, um pai ficou indignado ao encontrar, na sua caixa de correio, cupons de desconto para roupas de bebê enviados por uma cadeia de varejo em nome de sua filha menor de idade. Acusou a loja de tentar induzir a garota a ser mãe precocemente. Mas, após confrontar a adolescente, descobriu que a filha já estava grávida. Só ele não sabia. Os estatísticos da loja de departamentos Target não tiveram acesso a nenhum teste de gravidez. Apenas inferiram que aquela consumidora iria dar à luz cruzando informações de compras: a mudança no seu padrão de consumo era consistente com o de outras grávidas. Foram tão precisos quanto um exame de ultrassom.

Via Moral Hazard.

A evidência prova: você é obeso… mas não é gordo!


O p-valor (ou valor p) é, talvez, a estatística mais difundida entre médicos, psicólogos, economistas e quase toda profissão que utilize inferência estatística.

Virtualmente todo mundo que fez um curso de graduação ou pós-graduação já se deparou com o p-valor, seja nas disciplinas de estatística, seja ao realizar um trabalho empírico aplicado.

Entretanto, quase ninguém sabe muito bem o que o p-valor é ou pode ser considerado quando se trata de evidência. Sobre este ponto, há um artigo de 1996, do Schervish, que mostra como o p-valor não é uma medida coerente de evidência. Como assim? Bom, deixe-me tentar explicar de uma maneira simples.

Em geral, alguém é considerado obeso quando é muito gordo: o conceito de obeso pressupõe o conceito de gordo. Em outras palavras, é impossível ser obeso sem ser gordo.

Representemos obeso por O e gordo por G. Em termos formais, dizemos que O -> G (leia-se, O implica em G), isto é, se você é obeso, então você é gordo.

Note que o fato de O -> G não quer dizer que a volta é válida, isto é que, G -> O. Você pode ser gordo, mas apenas gordinho, ou gordo-magro, ou semi-gordo (ou diversos outros nomes que inventam por aí), mas pode não ser muito gordo e, consequentemente, não é obeso.

Bom, suponha agora que você queira descobrir se um determinado indivíduo é gordo ou é obeso. Suponha, também, que você tenha dados de exames deste indivíduo, que forneçam evidência para a hipótese de ele ser gordo ou ser obeso. Como uma boa evidência deveria se comportar?

Note que uma evidência “bem comportada” deveria ser coerente no seguinte sentido: se ela é uma evidência que dê bons indícios de que o indivíduo seja obeso, ela deve ser tão boa ou melhor evidência de que o indivíduo seja gordo. Por quê? Ora, porque, como vimos, se você é obeso, necessariamente você é gordo. Uma medida de evidência que indicasse que você é obeso, mas não é gordo, seria contraditória, certo?

Mas é isso que o p-valor, de certo modo,  faz.

Por exemplo, no exemplo simples de uma distribuição normal trazido por Schervish, utilizando um teste uniformemente mais poderoso não viesado para hipóteses intervalares,  quando se observa x=2,18, para uma hipótese de que a média esteja no intervalo [-0,82, 0,52], o p-valor é de 0,0498. Já para uma hipótese de que a média esteja no intervalo [-0,5, 0,5] o p-valor é de 0,0502. Note, entretanto, que, se a média não estiver no primeiro intervalo, necessariamente ela não está no segundo intervalo. Mas a evidência é “mais forte” contra a primeira hipótese do que contra a segunda. E se o limiar de 5% (que é comumente adotado) fosse utilizado para rejeitar ou aceitar uma hipótese (isso por si só já poderia ser bastante problemático, pois não rejeitar não é a mesma coisa de aceitar), você diria que a média não está em [-0,82, 0,52] mas que está em [-0,5, 0,5]. Isso é mais ou menos a mesma coisa de dizer que alguém é obeso, mas não é gordo.

Há vários problemas de interpretação com os métodos de inferência que estão sendo utilizados atualmente, e pretendo trazer outros pontos mais a frente.