Data Frames


***

Parte do livro Introdução à análise de dados com R.  Este trabalho está em andamento, o texto é bastante preliminar e sofrerá muitas alterações. 

Quer fazer sugestões? Deixe um comentário abaixo ou, se você sabe utilizar o github, acesse aqui.

Não copie ou reproduza este material sem autorização.

Volte para ver atualizações!

***

Data Frames: seu banco de dados no R

Por que um data.frame?

Até agora temos utilizado apenas dados de uma mesma classe, armazenados ou em um vetor ou em uma matriz. Mas uma base de dados, em geral, é feita de dados de diversas classes diferentes: no exemplo anterior, por exemplo, podemos querer ter uma coluna com os nomes dos funcionários, outra com o sexo dos funcionários, outra com valores… note que essas colunas são de classes diferentes, como textos e números. Como guardar essas informações?

A solução para isso é o data.frame. O data.frame é talvez o formato de dados mais importante do R. No data.frame cada coluna representa uma variável e cada linha uma observação. Essa é a estrutura ideal para quando você tem várias variáveis de classes diferentes em um banco de dados.

Criando um data.frame: data.frame() e as.data.frame()

É possível criar um data.frame diretamente com a função data.frame():

funcionarios <- data.frame(nome = c("João", "Maria", "José"),
                           sexo = c("M", "F", "M"),
                           salario = c(1000, 1200, 1300),
                           stringsAsFactors = FALSE)
funcionarios
##    nome sexo salario
## 1  João    M    1000
## 2 Maria    F    1200
## 3  José    M    1300

Também é coverter outros objetos em um data.frame com a função as.data.frame().

Discutiremos a opção stringsAsFactors = FALSE mais a frente.

Vejamos a estrutura do data.frame. Note que cada coluna tem sua própria classe.

str(funcionarios)
## 'data.frame':    3 obs. of  3 variables:
##  $ nome   : chr  "João" "Maria" "José"
##  $ sexo   : chr  "M" "F" "M"
##  $ salario: num  1000 1200 1300

Nomes de linhas e colunas

O data.frame sempre terá rownames e colnames.

rownames(funcionarios)
## [1] "1" "2" "3"

colnames(funcionarios)
## [1] "nome"    "sexo"    "salario"

Detalhe: a função names() no data.fram trata de suas colunas, pois os elementos fundamentais do data.frame são seus vetores coluna.

names(funcionarios)
## [1] "nome"    "sexo"    "salario"

Não parece tão diferente de uma matriz…

O que ocorreria com o data.frame funcionarios se o transformássemos em uma matriz? Vejamos:

as.matrix(funcionarios)
##      nome    sexo salario
## [1,] "João"  "M"  "1000"
## [2,] "Maria" "F"  "1200"
## [3,] "José"  "M"  "1300"

Perceba que todas as variáveis viraram character! Uma matriz aceita apenas elementos da mesma classe, e é exatamente por isso precisamos de um data.frame neste caso.

Manipulando data.frames como matrizes

Ok, temos mais um objeto do R, o data.frame … vou ter que reaprender tudo novamente? Não! Você pode manipular data.frames como se fossem matrizes!

Praticamente tudo o que vimos para selecionar e modificar elementos em matrizes funciona no data.frame. Podemos selecionar linhas e colunas do nosso data.frame como se fosse uma matriz:

## tudo menos linha 1
funcionarios[-1, ]
##    nome sexo salario
## 2 Maria    F    1200
## 3  José    M    1300

## seleciona primeira linha e primeira coluna (vetor)
funcionarios[1, 1]
## [1] "João"

## seleciona primeira linha e primeira coluna (data.frame)
funcionarios[1, 1, drop = FALSE]
##   nome
## 1 João

## seleciona linha 3, colunas "nome" e "salario"
funcionarios[3 , c("nome", "salario")]
##   nome salario
## 3 José    1300

E também alterar seus valores tal como uma matriz.

## aumento de salario para o João
funcionarios[1, "salario"] <- 1100

funcionarios
##    nome sexo salario
## 1  João    M    1100
## 2 Maria    F    1200
## 3  José    M    1300

Extra do data.frame: selecionando e modificando com $ e [[ ]]

Outras formas alternativas de selecionar colunas em um data.frame são o $ e o [[ ]]:

## Seleciona coluna nome
funcionarios$nome
## [1] "João"  "Maria" "José"

funcionarios[["nome"]]
## [1] "João"  "Maria" "José"

## Seleciona coluna salario
funcionarios$salario
## [1] 1100 1200 1300

funcionarios[["salario"]]
## [1] 1100 1200 1300

Tanto o $ quanto o [[ ]] sempre retornam um vetor como resultado.

Também é possível alterar a coluna combinando $ ou [[ ]] com <-:

## outro aumento para o João
funcionarios$salario[1] <- 1150

## equivalente
funcionarios[["salario"]][1] <- 1150
funcionarios
##    nome sexo salario
## 1  João    M    1150
## 2 Maria    F    1200
## 3  José    M    1300

Extra do data.frame: retornando sempre um data.frame com [ ]

Se você quiser garantir que o resultado da seleção será sempre um data.frame use drop = FALSE ou selecione sem a vírgula:

## Retorna data.frame
funcionarios[ ,"salario", drop = FALSE]
##   salario
## 1    1150
## 2    1200
## 3    1300

## Retorna data.frame
funcionarios["salario"]
##   salario
## 1    1150
## 2    1200
## 3    1300

Tabela resumo: selecionando uma coluna em um data.frame

Resumindo as formas de seleção de uma coluna de um data.frame.

screen-shot-2017-02-07-at-12-02-02-am

Criando colunas novas

Há diversas formas de criar uma coluna nova em um data.frame. O principal segredo é o seguinte: faça de conta que a coluna já exista, selecione ela com $, [,] ou [[]] e atribua o valor que deseja.

Para ilustrar, vamos adicionar ao nosso data.frame funcionarios mais três colunas.

Com $:

funcionarios$escolaridade <- c("Ensino Médio", "Graduação", "Mestrado")

Com [ , ]:

funcionarios[, "experiencia"] <- c(10, 12, 15)

Com [[ ]]:

funcionarios[["avaliacao_anual"]] <- c(7, 9, 10)

Uma última forma de adicionar coluna a um data.frame é, tal como uma matriz, utilizar a função cbind() (column bind).

funcionarios <- cbind(funcionarios,
                      prim_emprego = c("sim", "nao", "nao"),
                      stringsAsFactors = FALSE)

Vejamos como ficou nosso data.frame com as novas colunas:

funcionarios
##    nome sexo salario escolaridade experiencia avaliacao_anual prim_emprego
## 1  João    M    1150 Ensino Médio          10               7          sim
## 2 Maria    F    1200    Graduação          12               9          nao
## 3  José    M    1300     Mestrado          15              10          nao

E agora, temos colunas demais, como remover algumas delas?

Removendo colunas

A forma mais fácil de remover coluna de um data.fram é atribuir o valor NULL a ela:

## deleta coluna prim_emprego
funcionarios$prim_emprego <- NULL

Mas a forma mais segura e universal de remover qualquer elemento de um objeto do R é selecionar tudo exceto aquilo que você não deseja. Isto é, selecione todas colunas menos as que você não quer e atribua o resultado de volta ao seu data.frame:

## deleta colunas 4 e 6
funcionarios <- funcionarios[, c(-4, -6)]

Adicionando linhas

Uma forma simples de adicionar linhas é atribuir a nova linha com <-. Mas cuidado! O que irá acontecer com o data.frame com o código abaixo?

## CUIDADO!
funcionarios[4, ] <- c("Ana", "F", 2000,  15)

Note que nosso data.frame inteiro se transformou em texto! Você sabe explicar por que isso aconteceu? relembrar coerção

str(funcionarios)
## 'data.frame':    4 obs. of  4 variables:
##  $ nome       : chr  "João" "Maria" "José" "Ana"
##  $ sexo       : chr  "M" "F" "M" "F"
##  $ salario    : chr  "1150" "1200" "1300" "2000"
##  $ experiencia: chr  "10" "12" "15" "15"

Antes de prosseguir, transformemos as colunas salario e experiencia em números novamente:

funcionarios$salario <- as.numeric(funcionarios$salario) 

funcionarios$experiencia <- as.numeric(funcionarios$experiencia)

Se os elementos forem de classe diferente, use a função data.frame para evitar coerção:

funcionarios[4, ] <- data.frame(nome = "Ana", sexo = "F",
                                salario = 2000, experiencia = 15,
                                stringsAsFactors = FALSE)

Também é possível adicionar linhas com rbind():

rbind(funcionarios,
      data.frame(nome = "Ana", sexo = "F",
                 salario = 2000,  experiencia = 15,
                 stringsAsFactors = FALSE))

Atenção! Não fique aumentando um data.frame de tamanho adicionando linhas ou colunas. Sempre que possível pré-aloque espaço!

Removendo linhas

Para remover linhas, basta selecionar apenas aquelas linhas que você deseja manter:

## remove linha 4 do data.frame
funcionarios <- funcionarios[-4, ]
## remove linhas em que salario <= 1150
funcionarios <- funcionarios[funcionarios$salario > 1150, ]

Filtrando linhas com vetores logicos

Relembrando: se passarmos um vetor lógico na dimensão das linhas, selecionamos apenas aquelas que são TRUE. Assim, por exemplo, se quisermos selecionar aquelas linhas em que a coluna salario é maior do que um determinado valor, basta colocar esta condição como filtro das linhas:

## Apenas linhas com salario > 1000
funcionarios[funcionarios$salario > 1000, ]
##    nome sexo salario experiencia
## 2 Maria    F    1200          12
## 3  José    M    1300          15

## Apenas linhas com sexo == "F"
funcionarios[funcionarios$sexo == "F", ]
##    nome sexo salario experiencia
## 2 Maria    F    1200          12

Funções de conveniência: subset()

Uma função de conveniência para selecionar linhas e colunas de um data.frame é a função subset(), que tem a seguinte estrutura:

subset(nome_do_data_frame,
       subset = expressao_logica_para_filtrar_linhas,
       select = nomes_das_colunas,
       drop   = simplicar_para_vetor?)

Vejamos alguns exemplos:

## funcionarios[funcionarios$sexo == "F",]
subset(funcionarios, sexo == "F")
##    nome sexo salario experiencia
## 2 Maria    F    1200          12

## funcionarios[funcionarios$sexo == "M", c("nome", "salario")]
subset(funcionarios, sexo == "M", select = c("nome", "salario"))
##   nome salario
## 3 José    1300

Funções de conveniência: with

A função with() permite que façamos operações com as colunas do data.frame sem ter que ficar repetindo o nome do data.frame seguido de $ , [ , ] ou [[]] o tempo inteiro.

Para ilustrar:

## Com o with
with(funcionarios, (salario^3 - salario^2)/log(salario))
## [1] 2.4e+08 3.1e+08

## Sem o with
(funcionarios$salario^3 - funcionarios$salario^2)/log(funcionarios$salario)
## [1] 2.4e+08 3.1e+08

Quatro formas de fazer a mesma coisa (pense em outras formas possíveis):

subset(funcionarios, sexo == "M", select = "salario", drop = TRUE)
## [1] 1300

with(funcionarios, salario[sexo == "M"])
## [1] 1300

funcionarios$salario[funcionarios$sexo == "M"]
## [1] 1300

funcionarios[funcionarios$sexo == "M", "salario"]
## [1] 1300

Aplicando funções no data.frame: sapply e lapply, funções nas colunas (elementos)

Outras duas funções bastante utilizadas no R são as funções sapply() e lapply().

  • As funções sapply e lapply aplicam uma função em cada elemento de um objeto.
  • Como vimos, os elementos de um data.frame são suas colunas. Deste modo, as funções sapply e lapply aplicam uma função nas colunas de um data.frame.
  • A diferença entre uma e outra é que a primeira tenta simplificar o resultado enquanto que a segunda sempre retorna uma lista.

Testando no nosso data.frame:

sapply(funcionarios[3:4], mean)
##     salario experiencia
##        1250          14

lapply(funcionarios[3:4], mean)
## $salario
## [1] 1250
##
## $experiencia
## [1] 14

Filtrando variáveis antes de aplicar funções: filter()

Como data.frames podem ter variáveis de classe diferentes, muitas vezes é conveniente filtrar apenas aquelas colunas de determinada classe (ou que satisfaçam determinada condição). A função Filter() é uma maneira rápida de fazer isso:

# seleciona apenas colunas numéricas
Filter(is.numeric, funcionarios)
##   salario experiencia
## 2    1200          12
## 3    1300          15

# seleciona apenas colunas de texto
Filter(is.character, funcionarios)
##    nome sexo
## 2 Maria    F
## 3  José    M

Juntando filter() com sapply() você pode aplicar funções em apenas certas colunas, como por exemplo, calcular a média e máximo apenas nas colunas numéricas do nosso data.frame:

sapply(Filter(is.numeric, funcionarios), mean)
##     salario experiencia
##        1250          14

sapply(Filter(is.numeric, funcionarios), max)
##     salario experiencia
##        1300          15

Manipulando data.frames

Ainda temos muita coisa para falar de manipulação de data.framese isso merece um espaço especial. Veremos além de outras funções base do R alguns pacotes importantes como dplyr, reshape2 e tidyr em uma seção separada.

Anúncios