Ainda o Nobel: sobre a Matemática

Aproveitando o prêmio Nobel, o EconLog trouxe uma passagem do artigo de Galey e Shapley, sobre a matemática, que vale ser citada integralmente:

Finally, we call attention to one additional aspect of the preceding analysis which may be of interest to teachers of mathematics. This is the fact that our result provides a handy counterexample to some of the stereotypes which non-mathematicians believe mathematics to be concerned with.

Most mathematicians at one time or another have probably found themselves in the position of trying to refute the notion that they are people with “a head for figures.” or that they “know a lot of formulas.” At such times it may be convenient to have an illustration at hand to show that mathematics need not be concerned with figures, either numerical or geometrical. For this purpose we recommend the statement and proof of our Theorem 1. The argument is carried out not in mathematical symbols but in ordinary English; there are no obscure or technical terms. Knowledge of calculus is not presupposed. In fact, one hardly needs to know how to count. Yet any mathematician will immediately recognize the argument as mathematical, while people without mathematical training will probably find difficulty in following the argument, though not because of unfamiliarity with the subject matter.

What, then, to raise the old question once more, is mathematics? The answer, it appears, is that any argument which is carried out with sufficient precision is mathematical, and the reason that your friends and ours cannot understand mathematics is not because they have no head for figures, but because they are unable [or unwilling, DRH] to achieve the degree of concentration required to follow a moderately involved sequence of inferences. This observation will hardly be news to those engaged in the teaching of mathematics, but it may not be so readily accepted by people outside of the profession. For them the foregoing may serve as a useful illustration.

O Noah Smith também aproveita o tema para desenvolver um pouco sobre a matemática e a economia.

4 pensamentos sobre “Ainda o Nobel: sobre a Matemática

    • Hahahahah vi, isso não é matemática, são símbolos aleatórios colocados juntos.

      A única explicação é que o revisor sequer se deu o trabalho de ler, pois o negócio é patentemente absurdo.

      Não tem como não rir com:

      Proposition 3.3.
      Proof. This is obvious.

      Proposition 3.4. .
      Proof. This is clear.

      Theorem 5.4.
      Proof. This is left as an exercise to the reader.


  1. Isso me lembrou do caso de Alan Sokal e Jean Bricmont em 1997-1998 do livro desta dupla nomeado “Imposturas Intelectuais” …

    Lamentável, mas previsível, pois esta é a atividade mais abstrata e antiga da História da Civilização Humana …


Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logo do

Você está comentando utilizando sua conta Sair /  Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair /  Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair /  Alterar )

Conectando a %s