O culto da significância estatística II: Nate Silver


Após atuar com métodos estatísticos para previsão no Basebol, Nate Silver foi destaque nas previsões para a eleição presidencial dos Estados Unidos. Com a popularidade alcançada, seu livro “The Signal and the Noise: Why So Many Predictions Fail-but Some Don’t” virou best-seller na Amazon.

O livro é voltado para o público geral, e trata dos percalços enfrentados no mundo da previsão, tentando distinguir quando e como a estatística pode ser utilizada e boas previsões podem ser feitas. Nate discute o trabalho de Kahneman sobre vieses cognitivos muito comuns, presentes principalmente quando lidamos com incerteza e probabilidade; discute o trabalho de Tetlock, que mostrou como, na média, “experts” políticos não são muito melhores do que um simples “cara-e-coroa” –  a não ser que eles tenham certas características, como uma visão plural e interdisciplinar, conhecimento sobre a própria ignorância entre outros fatores. Essas são armadilhas que todos que lidam com dados devem estar cientes, para buscar evitá-las.

Nate defende a necessidade de se ter uma teoria sólida para se tratar os dados –  e que essa necessidade aumenta no mundo com dados cada vez mais abundantes. Alega que, em geral, áreas em que previsões geralmente falham são aquelas em que a teoria ainda é nebulosa e que recorrem demasiadamente a modelos data-driven.  Ele aborda também a dificuldade inerente a sistemas não-lineares, sistemas dinâmicos,  leis de potência entre outras fatores que, se negligenciados, podem resultar em péssimas previsões.

Nate traz diversos exemplos (às vezes chega a ser exaustivo) para ilustrar seu ponto, passando por Basebol, Clima, Terremotos, Economia, Pôquer etc.

Mas, o capítulo 8 do livro foi o que me mais chamou a atenção. Em um livro para o público geral, e que virou best-seller, Nate resgata a literatura sobre as críticas aos testes de significância estatística (uma discussão mais extensa aqui, wikipedia aquialguns temas no blog aqui). Ele cita:

– o texto do Nickerson “Null Hypothesis Significance Testing: A Review of an Old and Continuing Controversy”;

– o texto do Cohen “The Earth Is Round (p < .05)”;

– o texto do Gill “The insignificance of null hypothesis significance testing”;

Entre outros. O tom que ele usa não é leve, atribuindo grande parte da culpa pelos métodos atualmente utilizados a Fisher. Seguem alguns trechos:

“Fisher é provavelmente mais responsável do que qualquer outro indivíduo pelos métodos estatísticos que ainda permanecem em amplo uso hoje. Ele desenvolveu a terminologia do teste de significância estatística e muito de sua metodologia” (p. 353).

“Estes métodos [testes de significância] desencorajam o pesquisador de considerar o contexto ou a plausibilidade de suas hipóteses […] assim, você verá artigos aparentemente sérios sobre como sapos podem prever terremotos, ou como lojas como a Target geram grupos de ódio racial, que aplicam testes frequentistas para produzir resultados “estatisticamente significantes” (mas manifestamente ridículos)” (p.253).

“Os métodos fisherianos não nos encorajam a pensar sobre quais correlações implicam em causalidade e quais não. Talvez não seja surpresa que depois de passar uma vida interia pensando assim, Fisher perdeu a habilidade de dizer a diferença [entre causalidade e correlação] (p.255). Nate faz referência ao fato de Fisher defender que fumar não causa câncer.

Como o livro se tornou um best-seller, é bem provável que isso desperte a curiosidade do aluno, que geralmente aprende passivamente um algoritmo qualquer na sala de aula; e também que chame mais a atenção dos pesquisadores (e professores) sobre a forma como estão fazendo inferência. Por este motivo, acho que o impacto do livro será bastante positivo. O Nate propõe o uso de métodos Bayesianos; mas, como o livro não é técnico – e o universo bayesiano bastante amplo – difícil saber quais ele realmente defende. De qualquer forma, não caberiar aqui discutir isso agora (o Larry Wasserman chegou ao ponto de dizer que vai mostrar ao próprio Nate que ele não é baeysiano, mas sim que é um raving frequentista, desfilando como bayesiano. Vamos ver o que vai sair disso…).

Em resumo, vale lembrar que este não é um livro técnico e que, tampouco, Nate irá te ensinar a fazer previsões. Mas conseguirá fazer você refletir sobre as possibilidades e limitações, tanto dos pesquisadores quanto dos métodos estatísticos, em uma leitura agradável e recheada de exemplos práticos.

6 pensamentos sobre “O culto da significância estatística II: Nate Silver

  1. Li boa parte da sua dissertação, valeu por ter mandado o link. Confesso que alguns trechos mereciam ter sido lidos revendo alguns detalhes técnicos que o tempo e a paciência não me permitiram, especialmente os que dizem respeito a testes “alternativos” de significância. Uma coisa que me veio a mente lendo agora esse post é se além do que você chama de culto da significância, os economistas (em especial) também não têm exagerado no uso das “teorias assintóticas” nessa enxurrada de trabalhos com microdados.

    Curtido por 1 pessoa

    • Bom, trabalhando com microdados, em geral, você pode conseguir amostras enormes, o que pode mitigar o problema de resultados assintóticos. Neste caso, acho que o mais importante é saber interpretar os resultados e saber como lidar com os pressupostos, como no exemplo da normalidade do post anterior! Abs!

      Curtir

  2. Pingback: A Hipótese dos Mercados Eficientes. Ou culto da significância estatística III | Análise Real

  3. Pingback: Nate Silver, Frequentistas, Bayesianos e Economistas | Análise Real

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair /  Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair /  Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair /  Alterar )

Conectando a %s