Aparentemente esta pergunta não faria sentido. Afinal, por definição, se o dado é de corte-transversal, a ordem não interferiria na análise. A rigor, não importaria quem é o 1º dado, quem é o 2º dado, e assim por diante.
Todavia, nenhum dado é literalmente – stricto sensu – de corte transversal. Na verdade, o que define se o dado é uma “série temporal” ou “corte-transversal” não é sua natureza intrínseca, mas como ele foi ordenado. Na maioria dos casos, é impossível observar todos os indivíduos no mesmo período de tempo e o que de fato fazemos é julgar que a diferença temporal (ou espacial) entre uma coleta e outra é praticamente irrelevante para análise que queremos fazer. Só que às vezes essa ordem pode revelar informações (ou vieses) interessantes.
Recentemente, trabalhando com dados que seriam de corte transversal, parei para pensar na ordem que estavam dispostos. Eles estavam organizados aleatoriamente pelo sistema. Mas eu poderia recuperar as informações de preenchimento. E se eu organizasse os dados pela ordem de entrega do questionário? Ou pela ordem de início preenchimento? Será que valeria à pena esse esforço e seriam reveladas diferenças de correlação ou heterogeneidade uma vez que esse caráter “temporal” do dado fosse explicitado? Ainda não fiz este exercício e não tenho a resposta.
Mas, ao pensar nisso, lembrei na hora de um exemplo do livro texto do Aris Spanos, que gostaria de compartilhar. Ele utiliza dados de notas de alunos em uma prova, que não sei se são anedóticos ou reais*, mas que ilustram bem o ponto.
Os dados organizados por ordem alfabética tem o seguinte gráfico:
Pelo gráfico, os dados não parecem apresentar auto-correlação. Estimativas de um AR(1) e AR(2) apresentam coeficientes pequenos com coeficiente de variação grande. Isso juntamente à nossa crença a priori de que a ordem alfabética não deveria interferir nas notas, nos faz concluir que provavelmente não existe dependência nos dados.
Já a organização pela ordem dos assentos resulta no seguinte gráfico:
Esta figura, diferentemente da anterior, apresenta dependência nos dados. As notas parecem estar correlacionadas positivamente. O coeficiente de um AR(1) é bastante alto e sugere que notas altas estavam próximas de notas altas e, notas baixas, de notas baixas. A ordem dos dados, neste caso, pode ter revelado algo fundamental: para Spanos, por exemplo, isso é evidência de que houve muita cola durante a prova! Eu já diria que esta conclusão é precipitada. Outro fato que poderia explicar a correlação é o de que alunos com afinidades (e, consequentemente, notas parecidas) podem gostar de sentar juntos.
Mas a lição é clara: dados que tomamos como certo serem de “corte transversal” podem apresentar uma interessante dependência entre si quando observados com mais cuidado.
* o Spanos tem uns exemplos com dados curiosos. Neste post ele utiliza uma variável secreta X, que se sabe não ser correlacionada com a população dos EUA, para prever a população dos EUA. Ele mostra como uma regressão ingênua pode ter resultados espúrios, indicando, erroneamente, que a variável X explica a população. A variável X, supostamente, seria o número de sapatos que a vó de Spanos tinha em cada ano, desde 1955. Surge daí uma pergunta natural, feita por Corey:
“…how is it that Spanos has annual data on the number of pairs of shoes owned by his grandmother going back to 1955?”
Ao que Spanos responde.
“That’s easy! My grandmother would never throw away any shoes and each pair had a different story behind it; the stories I grew up with. Each pair was bought at a specific annual fair and it was dated.”
Como o cara é de Cyprus, sei lá, pode ser que essa resposta seja culturalmente plausível. Mas para um brasileiro é no mínimo estranha; eu prefiro acreditar que os dados sejam inventados do que acreditar que ele resolveu contabilizar o número de sapatos da avó em cada ano. Com relação aos dados das notas, uma possível pista de que talvez Spanos tenha inventado os dados é a de que, primeiro, ele diz que as notas são da matéria “Principles of Economics”. Depois, de que são da matéria “Macro-Economic Principles”. Mas, sejam os dados reais, ou fictícios, os exemplos continuam válidos!