Previsões para a copa: afinal, como se saíram os modelos?


Depois do 7 x 1 da Alemanha contra o Brasil, houve algum rebuliço na mídia. Nate Silver se explicou: não é que a derrota do Brasil fosse algo imprevisível, afinal, estimou-se em 35% as chances de a Alemanha vencer a partida. Mais de uma em cada três vezes. Entretanto, o placar de 7 a 1 foi, de fato, estimado como muito improvável segundo o modelo – apenas 0.025%. Mas será que isso por si só é suficiente para rejeitarmos seus resultados? Não necessariamente. Lembre que modelos são falsos. Você não quer saber se eles representam fielmente a realidade, mas sim se são úteis. A dificuldade está em, justamente, saber onde esses modelos podem ser úteis, e onde podem ser enganosos.

Modelar resultados raros e extremos é muito complicado.  Isso ilustra um ponto importante: não se exponha negativamente a Black Swans, pois a dificuldade (ou impossibilidade) de identificar tais eventos pode te expor a riscos muito maiores do que o que você imagina.  Nassim Taleb é alguém que bate há algum tempo nesta tecla.

Todavia, o interessante neste caso é que os modelos para a copa, por preverem vitória ou derrota, não estavam negativamente expostos a eventos extremos deste tipo (o diferencial de gols). Suponha que a probabilidade estimada para o resultado de 7 a 1 para a alemanha fosse de 0.25% ao invés de 0.025%, ou seja, 10 vezes maior. Isso em quase nada alteraria a probabilidade de um time ou outro vencer. Em outras palavras,  se você estiver apostando no resultado binário (vitória ou derrota), você não está exposto a um Black Swan deste tipo (poderia estar exposto a outros tipos, mas isso não vem ao caso agora).

Para ilustrar, comparemos uma distribuição normal (cauda bem comportada) com uma distribuição t de student com 2 graus de liberdade (cauda pesada). No gráfico abaixo temos a Normal em vermelho e a t de student em azul.  Note que a probabilidade de X ser maior do que zero é praticamente 50% nas duas distribuições. Entretanto, a probabilidade de X ser maior do que 3.3 é mais de 80 vezes maior na distribuição t do que na Normal. Na verdade, a simulação da t resulta em pontos bastante extremos, como -100 ou 50 (resultados “impossíveis” numa normal(0,1)), e por isso o eixo X ficou tão grande. Isto é, para prever o resultado binário X>0 ou X<0, não há muita diferença nos dois modelos, a despeito de haver enormes diferenças em eventos mais extremos.

Normal x T

 

Dito isto, não é de se surpreender que, apesar de Nate Silver ter colocado o Brasil como favorito – e ter errado de maneira acachapante o resultado contra a Alemanha – ainda assim suas previsões (atualizadas) terminaram a copa com o menor erro quadrático médio. Ou, também, com o menor erro logarítmico. Essas são medidas próprias de escore para previsões probabilísticas.

O gráfico final do erro quadrático ficou da seguinte forma. Não coloco o logarítmico por ser praticamente igual:

modelos_final

E segue também o gráfico final comparando as probabilidade observadas com as previstas:

calibracao_final

 

 

Previsões para copa: modelos x mercado, como estão se saindo?


Com o fim da primeira fase da copa, chegou a hora de começar a comparar os diferentes modelos de previsão. Temos uma amostra que não é grande, mas é, de certa forma, razoável – foram 48 jogos!

Como comparar previsões? Em post anterior discutimos brevemente como fazer isso, e lá ilustramos com os modelos de Nate Silver e do Grupo de Modelagem Estatística no Esporte (GMEE), da USP/USFCAR.

Entretanto, além desses dois modelos, temos agora mais algumas novidades: como o Nate Silver atualiza suas previsões jogo a jogo,  pegamos também aquelas que valiam antes de cada partida. Dessa forma podemos verificar se essas mudanças foram benéficas ou não.

Além disso, com a dica do Pedro Sant’Anna, coletamos as probabilidades implícitas pelo mercado de apostas do Betfair, tanto aquelas que estavam valendo bem antes de todas as partidas, como aquelas que constavam no início do dia de cada jogo.

Temos, portanto, dois benchmarks para nossos previsores. O primeiro é o cético, que acredita que o futebol é muito imprevisível e que qualquer resultado (vitória, derrota ou empate) é equiprovável. Entretanto, se o cético parece um oponente muito fácil,  temos também as previsões do Betfair, que podem ser vistas como uma média do senso comum em relação a cada partida, e parecem trazer uma competição mais acirrada.

O gráfico com a evolução do erro médio dia após dia segue abaixo. Note que, quanto menor o erro, melhor. A linha tracejada verde marca o erro médio do cético, nosso benchmark mínimo (0.222). A linha sólida vermelha e a linha tracejada amarela representam o mercado, antes e após atualizar as probabilidades, nosso benchmark  mais rigoroso.

modelos_copa

Como no primeiro dia só houve um jogo (o do Brasil) que era relativamente mais fácil de acertar, todo mundo começou com um erro muito baixo, e isso deixa a escala do gráfico muito grande para enxergar as diferenças dos dias posteriores. Então vamos dar um zoom na imagem, considerando os valores a partir do dia 14, quando o erro médio dos modelos começa a se estabilizar:

modelos_copa_zoom

A primeira coisa a se notar é que tanto o Nate Silver quanto o GMEE foram, de maneira consistente, melhores do que o cético e do que mercado. Vale fazer uma pequena ressalva para o GMEE que, hoje, no último dia da primeira fase, se aproximou bastante do Betfair. Nate Silver, contudo, ainda mantém uma distância razoável.

Outra coisa interessante é que o modelo atualizado de Nate Silver realmente terminou com erro menor do que suas previsões no início da competição! É importante ter em mente que isso não é um resultado óbvio:  saber como incorporar informações novas na medida que surgem não é algo trivial. Como contra-exemplo temos o mercado, que, surpreendentemente, conseguiu fazer com que suas previsões atualizadas ficassem piores!

Por agora ficamos aqui. Mais para frente veremos alguns gráficos com a calibração dos modelos: será que, quando eles previam 40% de chances de um resultado acontecer, eles aconteceram mais ou menos 40% das vezes?