Lei de Benford


Chute um valor: quanto seria o percentual de posts deste blog cujo número de acessos se inicia com o número 1?

Sendo mais claro, se o post X tem 10.251 acessos e, o post Y, 152 acessos, o primeiro digito de ambos seria o número 1. Quantos semelhantes a estes, com primeiro digito 1, teríamos em relação ao total? Se extraíssemos todos os primeiros dígitos, haveria algum padrão nesta distribuição? Uma resposta “intuitiva” (mas geralmente errada) é a de que provavelmente haveria tantos posts com números iniciais 1, quanto com números 2 ou 9. Mas quem já ouviu falar da Lei de Benford saberia que, muito provavelmente, não seria isso o observado. Haveria mais ou menos 30% de números 1, seguidos de 17% de números 2 e, após, 12% de números 3, decaindo até mais ou menos 5% de números 9.

Passemos aos dados para verificar se esta tendência realmente se confirma:

Benford

Funciona.  E o interessante é que isto ocorre não somente neste blog, mas nas mais diversas estatísticas do mundo real.

A Lei de Benford é assim chamada por conta do – cada vez mais famoso – artigo de Frank Benford, The Law of Anomalous Numbers. Segundo Benford, o insight para investigar este resultado é curioso.  Aparentemente, nas tabelas de logaritmos, as páginas mais desgastadas eram aquelas cujos números tinham primeiro digito 1 (em 1930, estas tabelas eram bastante utilizadas para facilitar operações de multiplicação). Com uma base de dados de 20.000 observações dos mais diversos fatos da natureza (tamanhos de rio, população de cidades, constantes da física, taxa de mortalidade etc), Benford verificou que, em cada uma delas, a distribuição dos dígitos seguia este mesmo padrão.

O resultado investigado por Benford não define apenas uma distribuição para os primeiros dígitos, conforme ilustrado no gráfico acima, mas uma distribuição para todos os dígitos significativos de um número. Mais formalmente, um conjunto de números que siga a Lei de Benford teria a mantissa de seus logaritmos uniformemente distribuída. Para o economista isto importaria pelo seguinte motivo –  como grande parte dos dados econômicos e contábeis seguem (aproximadamente) esta distribuição, dados errados, inventados ou fraudados poderiam ser identificados por desvios dos valores esperados pela Lei de Benford. Interessante, não? Espero que sim, pois trataremos mais disto em posts futuros.

Anúncios

5 pensamentos sobre “Lei de Benford

  1. Pingback: Lei de Benford – por que ela surge? | Análise Real

  2. Pingback: Benford Analysis R Package | Análise Real

  3. Pingback: benford.analysis 0.1 | Análise Real

  4. Pingback: Indício de fraude nas eleições? Usando a Lei de Benford. | Análise Real

  5. Apesar de se chamar Lei de Benford, ela foi primeiro relatada pelo matemático/físico americano Simon Newcomb, em 1881, a partir da mesma observação sobre as páginas mais desgastadas das tabelas de logaritmos.

    Curtir

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s