Analise a rede de seu facebook


Continuando o tema de análise de redes, abordado em post passado, vejamos agora um exemplo legal que você mesmo pode reproduzir!

O gráfico abaixo é o da minha rede do Facebook. Cada nódulo representa uma pessoa (não coloquei os nomes, mas você pode colocar caso queira) e cada arco uma relação de amizade entre elas.

Veja que as pessoas foram separadas em grupos com base nas relações de amizade, e cada grupo recebeu uma cor diferente. Isto foi feito por um algoritmo que, no meu caso, corretamente identificou os grupos sociais da rede (trabalho, família, viagens, cursos) com base em quão fortemente conectados os nódulos são. Perceba que algumas pessoas são representadas por nódulos maiores: no caso, elas são pessoas com alto nível de betweeness centrality, isto é, pessoas que são como uma ponte para grupos de amizades distintos dentro da rede – também seria possível mudar o tamanho dos nódulos segundo o número de conexões de cada pessoa (grau, na linguagem de rede) ou outras medidas de centralidade.

rede_do_facebook

Bacana, não?

Quer fazer o seu? Você vai precisar entrar no aplicativo Netvizz para baixar os dados do Facebook e, depois, rodá-los no programa Gephi (que pode ser baixado gratuitamente aqui). Caso tenha alguma dificuldade, há um didático tutorial na internet. Futuramente, para não dizer que não falamos de economia, vamos fazer esse mesmo experimento com a visualização de dados de investimento direto no exterior e ver o que sai.

Livro de Nate Silver em promoção relâmpago, agora, na Amazon.com


Acabei de receber um email da Amazon sobre uma promoção relâmpago do livro do Nate Silver, The Signal and the Noise: Why So Many Predictions Fail — but Some Don’t. Apenas por 12 horas, o livro está com 75% de desconto, (6,99 dólares a versão hardcover). Para quem pensava em comprar, eis uma boa oportunidade.

falamos sobre o Nate Silver no blog aqui e para quem procura uma resenha do livro em português, deixo a do Luciano Sobral.

PS: quem estiver lendo somente agora, a promoção já se encerrou.

Análise de redes e Moviegalaxies: seu filmes preferidos de uma forma que você nunca viu


Um campo de estudos que pode render muitos frutos na economia é o de análise de redes. Para quem tem curiosidade, há um curso bem interessante de análise de redes sociais no Coursera.

Mas, na verdade, o objetivo deste post é o de divulgar um site bem bacana, Moviegalaxies, que faz análise de rede com os personagens de filmes (você inclusive pode baixar os dados para o Gephi).

Um dos gráficos de que gostei é a o da rede de  “O Poderoso Chefão: parte II”:

The Godfather Part II

Nova base de dados de séries de tempo


Há pouco tempo surgiu uma nova base de dados de série de tempos – Quandl.

Além de agrupar diversas estatísticas de fontes diferentes, o site permite baixar os dados em vários formatos (como excel ou csv) e ainda permite importação de dados diretamente em várias ferramentas de análise, como R e Python. Isso é uma mão na roda em muitos casos.

Outra possibilidade no Quandl é a de incorporar gráficos diretamente nos posts, tal como o exemplo abaixo com a evolução do IPCA acumulado em 12 meses.

Graph of IPCA - Acumulado em 12 meses

Apesar da ressalva de ser uma fonte secundária de informações, para quem ainda não conhecia, certamente vale a pena conferir.

Análise de dados com R e ggplot2 – Hadley Wickham no Google Tech Talks


Vídeo antigo, mas com o qual só tomei contato agora. Hadley Wickham no Google Tech Talks.

Hadley Wickham é o criador de pacotes para o R como: ggplot2, plyr, reshape2.

Economia, Democratas e Republicanos


Ontem, dois blogs (Marginal Revolution e Econbrowser) comentaram um interessante artigo de Alan Blinder e Mark Watson. A economia americana, sob quase qualquer ótica que você escolher, se comportou melhor durante os governos democratas do que durante os governos republicanos. Vejam alguns indicadores:

PIB: 4,35% x 2,54%;

Recessões: 8 para os democratas x 41 para os republicanos;

Taxa de desemprego: 5,6% x 6,0% (e variação na taxa de desemprego, -0.8 p.p x +1.1 p.p);

Taxa de inflação: 2,97% x 3,44% (mas os democratas perdem na variação, +1.05 p.p x -0.83 p.p)

Mas o que explicaria essas diferenças? Os democratas governam melhor do que os republicanos? Não necessariamente. Os autores acreditam que os democratas, muito provavelmente, foram simplesmente sortudos. Segundo Blinder e Watson, os fatores que melhor explicam os diferenciais são: os choques de petróleo, os choques de produtividade e as expectativas dos consumidores.

Em suas palavras:

Specifically, Democratic presidents have experienced, on average, better oil shocks than Republicans, a better legacy of (utilization-adjusted) productivity shocks, and more optimistic consumer expectations (as measured by the Michigan ICE).

Minha opinião: o artigo é provocador, mas a evidência apresentada muito ambígua. Mesmo se aceitarmos que essas são as variáveis fundamentais, quer queira, quer não,  tanto o preço do petróleo, quanto as expectativas dos consumidores são variáveis bastante afetadas por decisões políticas; e a “produtividade dos fatores” é um resíduo, indefinido do ponto de vista econômico (os autores admitem essas três qualificações, mas timidamente).

Assim, me parece que, neste caso, não haveria como fugir de uma boa (e extensa) revisão histórica de como e por que se deram os choques (de petróleo e de produtividade), bem como uma boa fundamentação teórica (e, quem sabe, contrafactual) de como esses choques ocorreriam a despeito das decisões políticas de ambos os partidos.

Livros de R e Python


Compartilharam comigo, agora passo em frente. Seguem dois links com alguns livros em pdf para programação em R e em Python.

Mais sobre Python: o Sargent publicou um livro online de modelagem e economia quantitativa com a linguagem.

Concentração do Investimento Brasileiro no Exterior e erro de medida


Já que falamos do CBE no post anterior, aproveito para destacar outro dado daquela pesquisa, que muitas vezes passa despercebido: a concentração do Investimento Brasileiro Direto (IBD) no exterior em poucos investidores. Na publicação dos resultados, os declarantes foram separados pelo tamanho de seu investimento, como, por exemplo, investidores que possuem investimentos no exterior de até US$ 1 milhão (a menor categoria) ou investidores que possuem investimentos no exterior maiores do que US$1 bilhão (a maior categoria).

No quadro 2 da publicação, você encontrará a seguinte distribuição, reproduzida no gráfico abaixo (agrupei as duas últimas categorias do quadro). Em vermelho, você tem o percentual de investidores que se encontram naquela faixa de investimento – perceba que quase 70% dos declarantes do CBE têm um investimento menor ou igual a  US$ 1 milhão e que apenas 0,3% dos declarantes possuem investimentos maiores do que US$500 milhões. Já em azul, você encontra o quanto cada uma dessas categorias responde pelo valor total declarado. Note que 0,3% dos declarantes respondem por cerca de 70% dos 356 bilhões de dólares que o Brasil possuía investidos no exterior.

Concentracao IBD

Em outras palavras, a distribuição do IBD tem cauda bastante pesada – poucas observações respondem pela quase totalidade do valor. Além de ilustrar  o grau de concentração deste tipo de investimento , isto tem uma implicação importante com relação ao (provável) erro de medida, e consequentemente, na incerteza dessas estatísticas.

Para tanto, vejamos o quadro 7, que é análogo ao quadro 2, mas faz a separação apenas para a modalidade de IBD participação no capital. Pelo quadro, 32 declarantes respondem por US$ 158 bilhões do estoque total, isto dá, na média, cerca de US$ 5 bilhões por declarante. Agora veja a distribuição da mesma modalidade por país (quadro 3). Em 2012, o maior estoque de IBD participação no capital, segundo o quadro 3 do CBE, estava na Áustria, com cerca de US$ 57 bilhões. Este valor, então, decresce exponencialmente, sendo a média por país mais ou menos US$ 6 bilhões e a mediana US$ 1 bilhão. Perceba que, caso apenas um dos grandes declarantes esteja classificado de forma errada – e considerando, conservadoramente, o valor médio do grupo – no melhor cenário, se o erro for na Áustria, isso responde por 10% do total estimado para aquele país; se for em um país de IBD médio, isso responde por um erro de 83%; e se for em um país de IBD mediano, o valor do erro é cinco vezes maior do que o valor estimado!

Então se, por um lado, o fato de a distribuição estar concentrada em poucos investidores reduz o número de declarantes que o Banco Central precisa investigar para validar grande parte do valor total declarado, por outro, o impacto de apenas um registro errado pode ser bastante significativo. Note a diferença deste tipo de estatística, para, por exemplo, a estimativa da expectativa de vida média do brasileiro – neste caso, vários registros errados dificilmente alterariam o valor médio de forma substancial.

Para finalizar,  uma curiosidade. Veja abaixo os gráficos do logaritmo do valor do investimento (X) contra o logaritmo da probabilidade de o investidor ter investimentos maiores do que X (a linha preta é reta de regressão). Lembra o gráfico de um lei de potência, não?

CBE_ConcentracaoMais sobre este tipo de assunto neste blog aqui.

 

Em que países os brasileiros investem?


No post anterior vimos quais países tem investimento direto no Brasil (pelo critério de país de origem imediata).

Agora, que tal visualisarmos em que países os brasileiros investem?

Para tanto, podemos pegar os dados da pesquisa de Capitais Brasileiros no Exterior. Tal qual criança quando ganha um brinquedo novo, vamos lá brincar no R mais uma vez. Abaixo, mapa com a distribuição do Investimento Brasileiro Direto (IBD), participação no capital, conforme país de destino imediato, em 2012.

IBD_pais

PS: encontrei o pdf do Applied Spatial Data Analysis with R,  então esperem mais posts deste tipo.

Investimento Estrangeiro Direto no Brasil (mapa por País de Origem Imediata)


Que tal visualizar os dados do Censo de Capitais Estrangeiros de uma maneira diferente?

Abaixo, mapa com a distribuição do Investimento Estrangeiro Direto (IED) no Brasil, critério participação no capital, em 2010, segundo o país de origem imediata. O mapa foi feito no R. Quanto mais escuro, maior o investimento daquele país em empresas brasileiras.
IED_Pais

PS: agradeço ao Rogério pelo didático post ensinando o caminho das pedras.