Dúvidas no R ou Python? Vá ao StackOverflow em Português!


O famoso site de programação StackOverflow (SO) ganhou uma versão tupiniquim.

O SO é um excelente site de perguntas e respostas. Seu diferencial é ser direto: as perguntas têm que ser bem definidas e as  respostas têm de resolver diretamente o problema. Quer saber, por exemplo, como agregar uma base de dados no R? Pergunte lá e surgirão várias respostas diferentes de como se fazer isso.

Ainda há poucos usuários ativos no R do SO em português. Mas estamos fazendo um esforço para popular o site com perguntas e respostas. Você pode fazer perguntas sobre problemas que está enfrentando atualmente ou, inclusive, registrar perguntas e respostas que você já sabe, como, por exemplo, aqui (gráfico em 3d), aqui (barplot) ou aqui (contar ocorrências em um vetor) – alguém certamente passará pela mesma dificuldade e a solução que você encontrou para o problema pode ser útil. Ou, ainda, outro usuário pode ter uma solução mais interessante do que a que você propôs. De uma olhada nas perguntas que já foram feitas sobre R aqui.

Se você usa  R (Python), cadaste-se no StackOverflow em Português e ajude o site a crescer! Podemos torná-lo um ótimo ambiente para a comunidade brasileira de R, tal como é hoje o SO em inglês.

Distribuindo pacotes no R. Qual o alcance?


Faz mais ou menos 1 mês que o pacote benford.analysis 0.1 foi disponibilizado no CRAN. 

Achei que valeria o esforço adicional de criar o pacote por alguns motivos e, entre eles, dois se destacam: (i) pacotes deixam os arquivos fontes mais estruturados, facilitam o uso das funções, forçam a criar uma documentação e passam por uma bateria de sanity tests que ajudam a criar boas práticas de programação; (ii) pacotes tornam o compartilhamento do código extremamente simples, ainda mais se o pacote estiver no CRAN, pois, basta rodar

 install.packages("benford.analysis") 

e qualquer pessoa de qualquer lugar do mundo terá o pacote instalado em sua máquina.

Sobre este último ponto, infelizmente, não é possível ter dados de download do CRAN de uma maneira consolidada, pois há diversos espelhos do site ao redor do mundo e nem todos guardam informações de acesso. Entretanto, o CRAN do RStudio faz esse registro. Assim resolvi baixar os dados de lá e ver se alguma outra alma além de mim baixou o benford.analysis.

Sinceramente, eu achei que encontraria uns 10 ou 11 downloads registrados – no máximo -, pois estamos com dados de apenas um espelho do CRAN e estamos falando de um pacote simples e relativamente desconhecido. Ocorre que neste 1 mês de existência o benford.analysis foi baixado 190 vezes em mais de 40 países diferentes considerando apenas o espelho do RStudio.  Um número pequeno quando comparado com pacotes como ggplot2 (que deve estar em virtualmente quase toda máquina de usuário do R), mas, ainda assim, grande o suficiente para me surpreender!

E também para me preocupar. Nesse meio tempo encontrei dois pequenos bugs no pacote. E se antes achava que não deveria ter pressa para corrigi-los, agora esperem uma atualização em breve (mas, claro, depois do carnaval)!

Existe um pacote para isso.


Por que eu uso R, em 30 segundos:

O que o Facebook diz sobre o seu relacionamento?


O time de análise de dados do Facebook fez uma série de 6 posts sobre o valentine’s day (dia dos namorados) nos Estados Unidos.

Recomendo fortemente a leitura de todos. O posts tratam dos seguintes temas:

  • O primeiro post trata de amor e religião e constata que há poucos casais de religiões diferentes, mesmo em países com alta diversidade religiosa.
  • O segundo post trata da diferença de idade entre casais. Na média, homens são mais de dois anos mais velhos do que suas  parceiras.
  • O terceiro post trata da duração dos relacionamentos. Um dos resultados: quanto mais tempo de relacionamento, menor a chance de o casal se separar.
  • O quarto post trata das “melhores” cidades para os solteiros (como são cidades dos EUA, provavelmente não interessará muito os leitores deste blog).
  • O quinto post trata da mudança de comportamento dos casais antes e depois do relacionamento. Esse é um dos mais bacanas. Para quem quiser ler algo em português, a Folha fez uma matéria. Vale reproduzir um gráfico, relacionando a quantidade de posts com palavras positivas e os dias antes/após o início do namoro:

1898250_10152219519288415_127545461_n

Os dados confirmam aquilo que você já percebia: casais recém formados postam sobre unicórnios vomitando arco-iris e o efeito pode durar muito, muito tempo (destaque para o gráfico feito com ggplot2).

  • Por fim, o último post trata do que acontece após o término do relacionamento. As interações, principalmente de apoio dos amigos, aumentam bastante.

O Facebook é, muito provavelmente, a organização com a maior base de dados sobre informações pessoais do mundo. O potencial disso é inimaginável. No final do ano passado, eles contrataram o professor da NYU Yann LeCun para liderar o departamento de inteligência articial da empresa – parece que ainda há muita coisa interessante por esperar.

Mais sobre análise de dados do Facebook neste blog, aqui (analise seus próprios dados) e aqui (descubra características  da pessoa – como a orientação sexual – com base no que ela curte).

Analise a pesquisa mensal de emprego com R


Mais um post no excelente analyze survey data for free, agora com a PME.

Parabéns ao Anthony Damico e ao Djalma Pessoa pela iniciativa!

 

benford.analysis 0.1


O pacote benford.analysis (versão 0.1) está disponível no CRAN e você já pode instalar no R com o comando:

 install.packages("benford.analysis") 

O objetivo do pacote é prover algumas funções que facilitem a validação de dados utilizando a Lei de Benford (para saber mais sobre a lei, veja aqui e aqui).

Validar como e para quê?

Um dos objetivos pode ser o auxilío na detecção de manipulações contábeis. Dados financeiros (como pagamentos) tendem a seguir a Lei de Benford e tentativas de manipulação podem acabar sendo identificadas.

Por exemplo, a lei 8.666/93 estabelece que o limite para se fazer uma licitação na modalidade convite é de R$80.000,00. Será que os valores de licitações seguiriam a Lei de Benford? Pode ser que sim. E, caso haja a tendência, uma tentativa de manipular artificialmente valores licitados para algo pouco abaixo de R$80 mil geraria um “excesso” de dígitos iniciais 7. Restaria verificar uma amostra desses registros para confirmar a existência ou não de manipulação indevida.

Outro objetivo pode ser acadêmico: a validação de dados de pesquisas e censos. Por exemplo, dados de população de municípios, ou dados de renda dos indivíduos tendem a ter distribuição conforme a lei de Benford. Assim, desvios dos valores observados em relação aos valores esperados podem ajudar a identificar e corrigir dados anômalos, melhorando a qualidade da estatística.

Vejamos rapidamente alguns exemplos das funções básicas do pacote.

O benford.analysis tem 6 bases de dados reais, retiradas do livro do Mark Nigrini, para ilustrar as análises. Aqui vamos utilizar 189.470 registros de pagamentos de uma empresa no ano de 2010. Os valores vão desde lançamentos negativos (estornos) até valores na ordem de milhões de dólares.

Primeiramente, precisamos carregar o pacote (se você já o tiver instalado) e em seguida carregar os dados de exemplo:

library(benford.analysis) #carrega pacote

data(corporate.payment) #carrega dados

Para analisar os dados contra a lei de benford, basta aplicar a função benford nos valores que, no nosso caso, estão na coluna ‘Amount’.

 bfd.cp <- benford(corporate.payment$Amount)

Com o comando acima criamos um objeto chamado “bfd.cp” contendo os resultados da análise para os dois primeiros dígitos dos lançamentos positivos, que é o padrão. Caso queira, você também pode mudar quantos digitos deseja analisar, ou se quer analisar os dados negativos e positivos juntos, entre outras opções Para mais detalhes, veja a ajuda da função:

 ?benford

Com a análise feita, vejamos os principais gráficos com o comando:

 plot(bfd.cp) 

Os gráficos resultantes se encontram abaixo. Os dados da empresa estão em azul e os valores esperados pela lei de benford em vermelho.

plot_cp

O primeiro gráfico diz respeito à contagem de observações com relação aos seus dois primeiros dígitos, comparando-a com o valor esperado pela Lei de Benford.  Percebe-se que os dados da empresa se ajustam à Lei, mas, também, que há um salto claro no dígito 50!

O segundo gráfico é análogo ao primeiro, mas faz esta contagem para a diferença dos dados ordenados. Como nossos dados são discretos, este saltos em 10, 20, 30,  são naturais e não devem ser encarados como algo suspeito. Por fim, o terceiro gráfico tem um objetivo diferente e, em geral, você também não deve esperar encontrar um bom ajuste dos dados à reta vermelha, principalmente com dados de cauda pesada. Ali se encontra a soma dos valores das observações agrupadas por primeiros dígitos e a  intenção é identificar grupos de valores influentes (que, se estiverem errados, podem afetar bastante uma estatística).

Vejamos agora os principais resultados da análise com o comando

 print(bfd.cp) 

ou somente

bfd.cp

results_cp

Primeiramente são mostrados dados gerais da análise, como o nome da base de dados, o número de observações e a quantidade de primeiros dígitos analisados.

Logo em seguida têm-se as principais estatísticas da mantissa do log das observações. Se um conjunto de dados segue a lei de benford esses valores deveriam ser próximos de:

  • média: 0.5;
  • variância: 1/12 (0.08333…);
  • curtose: 1.2;
  • assimetria: 0.

Que são, de fato, similares aos dados de pagamento da empresa, confirmando a tendência.

Após isso, temos um ranking com os 5 maiores desvios, que é o que mais nos interessa aqui. Veja que o primeiro grupo é o dos números que começam com o dígito 50, como estava claro no gráfico, e o segundo grupo é o dos números que começam com 11. Esses registros são bons candidatos para uma análise mais minuciosa.

Por fim, temos um conjunto de estatísticas de grau de ajuste – que não irei detalhar agora para não prolongar muito este post. Tomemos como exemplo o teste de Pearson, que é bem conhecido. Veja que o p-valor do qui-quadrado é praticamente zero, sinalizando um desvio em relação ao esperado. Mas, como já dissemos várias vezes neste blog, o mais importante não é saber se os dados seguem ou não a lei de benford exatamente. Para isso você não precisaria sequer testá-los. O mais importante é verificar qual o tamanho do desvio e a sua importância prática. Assim, há um pequeno aviso ao final: Real data will never conform perfectly to Benford’s Law. You should not focus on p-values!

Voltando, portanto, à identificação dos desvios, você pode pegar os conjuntos dos dados “suspeitos” para análise com a função getSuspects.

 suspeitos <- getSuspects(bfd.cp, corporate.payment)

Isto irá gerar uma tabela com os dados dos 2 grupos de dígitos com maior discrepância (pela diferença absoluta), conforme ilustrado abaixo. Veja que são exatamente os dados que começam com 50 ou 11. Você pode personalizar qual a métrica de discrepância utilizar e também quantos grupos analisar. Para mais detalhes veja a ajuda da função:

 ?getSuspects

suspects

Note que nossa base de dados é de mais de 189 mil observações. Verificar todos os dados seria infactível. Poderíamos analisar uma amostra aleatória desses dados. Mas, não necessariamente isso seria eficiente.  Veja, assim, que a análise de benford, com apenas os dois primeiros dígitos, nos deu um grupo de dados suspeitos com menos de 10% das observações, permitindo um foco mais restrito e talvez mais efetivo para análise.

Há outras funcionalidades no pacote e na ajuda há exemplos com dados reais. O pacote é bem simples, o intuito é fornecer um mínimo de funções que automatize os procedimentos, facilite a vida e minimize a quantidade de caracteres digitados de quem queira fazer a análise. Algumas funcionalidades que serão adicionadas no futuro são: melhoria na parte gráfica com o Lattice, inclusão de comparação dos dados com a lognormal e inclusão de mais dados de exemplo.

Se encotrar algum bug, tiver alguma dúvida ou se quiser deixar alguma sugestão, comente aqui!

PS: com relação às sugestões, tanto o R quanto este pacote são livres e com código aberto. Então, sinta-se à vontade não somente para sugerir, mas principalmente para escrever novas funções e funcionalidades!

Introducing dplyr


Novo pacote dplyr, com foco em performance. Estive usando o data.table e é realmente muito rápido, se o dplyr for tão rápido quanto e mais intuitivo, será excelente.

RStudio Blog

dplyr is a new package which provides a set of tools for efficiently manipulating datasets in R. dplyr is the next iteration of plyr, focussing on only data frames. dplyr is faster, has a more consistent API and should be easier to use. There are three key ideas that underlie dplyr:

  1. Your time is important, so Romain Francois has written the key pieces in Rcpp to provide blazing fast performance. Performance will only get better over time, especially once we figure out the best way to make the most of multiple processors.
  2. Tabular data is tabular data regardless of where it lives, so you should use the same functions to work with it. With dplyr, anything you can do to a local data frame you can also do to a remote database table. PostgreSQL, MySQL, SQLite and Google bigquery support is built-in; adding a new backend is…

Ver o post original 493 mais palavras

Benford Analysis R Package


Em post anterior falamos sobre a Lei de Benford e que ela pode ser utilizada para o auxílio na detecção de fraudes contábeis ou dados estranhos. Também explicamos por que ela surge – resumidamente, pode-se dizer que números que tenham crescimento exponencial, ou que sejam derivados da multiplicação de outros números, tenderiam à lei de Benford – e isto abrange muitos dados econômicos.

Além da Lei de Benford, temos falado bastante sobre o R por aqui. Então, que tal unirmos as duas coisas? Bem, em alguns dias, com o pacote benford.analysis, você poderá analisar facilmente e rapidamente (espero!) seus dados contra a lei de Benford para identificar possíveis erros.

A idéia do pacote é tornar a análise algo rápido e simples. Por exemplo, o gráfico abaixo é gerado com apenas dois comandos: bfd <- benford(dados) e plot(bfd).

Plot BenfordVamos ver se vai ficar bacana.

Atualização: a versão 0.1 está no CRAN.

Investimento Estrangeiro Direto no Brasil por Estado (Indústria)


Os dados do Censo de Capitais Estrangeiros no País, em 2010, trouxeram a distribuição do Investimento Estrangeiro Direto (IED) na indústria por Unidade da Federação (UF).

Somente da Indústria? E como foi feita a distribuição? Aqui voltamos ao que já dissemos sobre erro de medida (ver aqui, aqui, aqui e aqui, por exemplo). Distribuir o estoque investimento estrangeiro por UF é algo complicado, sujeito a erros diversos, tanto ao se definir a metodologia, quanto ao se mensurar o valor. No censo de 1995, por exemplo, os dados foram distribuídos por estado “[…] tomando por base o endereço da sede da empresa”. Será que essa é uma boa medida? Depende.

Percebe-se que uma indústria que concentre o grosso da sua estrutura produtiva no Pará, mas que tenha sede em São Paulo, será considerada um investimento nesta última UF.  Se a intenção é medir onde se encontra o centro administrativo, esta medida poderá ser boa. Todavia, se intenção é medir onde se encontram as unidades produtivas, esta medida terá, talvez, distorções significativas. Qual a melhor forma, então, de se distribuírem os investimentos por estado? Pela localização da sede? Pela localização do ativo imobilizado? Pela distribuição dos funcionários?  Particularmente, acho que não existe uma métrica única que se sobressaia às demais – a melhor opção depende do uso que você irá fazer da estatística.

Voltando ao Censo, a pesquisa passou a considerar a distribuição do ativo imobilizado como critério para alocação do IED – e apenas para a indústria . Os declarantes distribuíram percentualmente o seu imobilizado pelos diferentes estados e isso foi utilizado para ponderar o investimento direto pelas UF’s.

Segue abaixo mapa do Brasil com a distribuição do IED da indústria por Unidade Federativa:

IED_UF

 Para aprender a fazer o mapa, veja aqui.

Analisando microdados do IBGE com o R


Os materiais do Seminário de Metodologia do IBGE de 2013 estão disponíveis para download. Dentre eles, destaco o do mini-curso Introdução à análise de dados amostrais complexos. Lá você vai aprender a replicar os resultados da POF, da PNAD e amostra do Censo levando em conta o desenho amostral das pesquisas (que é necessário para se calcular corretamente medidas de precisão, como a variância). O material é bastante focado no blog de Anthony Damico, Analyze Survey Data for Free. O blog é fantástico, com diversos exemplos de como baixar e analisar dados de pesquisas públicas levando em conta o plano amostral, tudo com ferramentas gratuitas como o R.