Como organizar dados de corte transversal?


Aparentemente esta pergunta não faria sentido. Afinal, por definição, se o dado é de corte-transversal, a ordem não interferiria na análise. A rigor, não importaria quem é o 1º dado, quem é o 2º dado, e assim por diante.

Todavia, nenhum dado é literalmente – stricto sensu – de corte transversal. Na verdade, o que define se o dado é uma “série temporal” ou “corte-transversal” não é sua natureza intrínseca, mas como ele foi ordenado. Na maioria dos casos, é impossível observar todos os indivíduos no mesmo período de tempo e o que de fato fazemos é julgar que a diferença temporal (ou espacial) entre uma coleta e outra é praticamente irrelevante para análise que queremos fazer. Só que às vezes essa ordem pode revelar informações (ou vieses) interessantes.

Recentemente, trabalhando com dados que seriam de corte transversal, parei para pensar na ordem que estavam dispostos. Eles estavam organizados aleatoriamente pelo sistema. Mas eu poderia recuperar as informações de preenchimento. E se eu organizasse os dados pela ordem de entrega do questionário? Ou pela ordem de início preenchimento? Será que valeria à pena esse esforço e seriam reveladas diferenças de correlação ou heterogeneidade uma vez que esse caráter “temporal” do dado fosse explicitado? Ainda não fiz este exercício e não tenho a resposta.

Mas, ao pensar nisso, lembrei na hora de um exemplo do livro texto do Aris Spanos, que gostaria de compartilhar. Ele utiliza dados de notas de alunos em uma prova, que não sei se são anedóticos ou reais*, mas que ilustram bem o ponto.

Os dados organizados por ordem alfabética tem o seguinte gráfico:

ordem_alfabetica

Pelo gráfico, os dados não parecem apresentar auto-correlação. Estimativas de um AR(1) e AR(2) apresentam coeficientes pequenos com coeficiente de variação grande. Isso juntamente à nossa crença a priori de que a ordem alfabética não deveria interferir nas notas, nos faz concluir que provavelmente não existe dependência nos dados.

Já a organização pela ordem dos assentos resulta no seguinte gráfico:

posicao_sentado

Esta figura, diferentemente da anterior, apresenta dependência nos dados. As notas parecem estar correlacionadas positivamente. O coeficiente de um AR(1) é bastante alto e sugere que notas altas estavam próximas de notas altas e, notas baixas, de notas baixas. A ordem dos dados, neste caso, pode ter revelado algo fundamental: para Spanos, por exemplo, isso é evidência de que houve muita cola durante a prova! Eu já diria que esta conclusão é precipitada. Outro fato que poderia explicar a correlação é o de que alunos com afinidades (e, consequentemente, notas parecidas) podem gostar de sentar juntos.

Mas a lição é clara: dados que tomamos como certo serem de “corte transversal” podem apresentar uma interessante dependência entre si quando observados com mais cuidado.

* o Spanos tem uns exemplos com dados curiosos. Neste post ele utiliza uma variável secreta X, que se sabe não ser correlacionada com a população dos EUA, para prever a população dos EUA. Ele mostra como uma regressão ingênua pode ter resultados espúrios, indicando, erroneamente, que a variável X explica a população. A variável X, supostamente, seria o número de sapatos que a vó de Spanos tinha em cada ano, desde 1955. Surge daí uma pergunta natural, feita por Corey:

“…how is it that Spanos has annual data on the number of pairs of shoes owned by his grandmother going back to 1955?”

Ao que Spanos responde.

“That’s easy! My grandmother would never throw away any shoes and each pair had a different story behind it; the stories I grew up with. Each pair was bought at a specific annual fair and it was dated.”

Como o cara é de Cyprus, sei lá, pode ser que essa resposta seja culturalmente plausível. Mas para um brasileiro é no mínimo estranha; eu prefiro acreditar que os dados sejam inventados do que acreditar que ele resolveu contabilizar o número de sapatos da avó em cada ano. Com relação aos dados das notas, uma possível pista de que talvez Spanos tenha inventado os dados é a de que, primeiro, ele diz que as notas são da matéria “Principles of Economics”. Depois, de que são da matéria “Macro-Economic Principles”. Mas, sejam os dados reais, ou fictícios, os exemplos continuam válidos!

Richard Feynman e cheiro de livro


Para quem tem algo muito importante para fazer agora, mas quer procrastinar, seguem duas leituras:

Moral Hazard voltou, e compartilhou um excelente e provocante comentário de Richard Feynman sobre a educação brasileira (PDF direto aqui). Penso eu que ainda há muito disso, infelizmente.

Há pouco tempo havia recomendado a compra de um e-reader, com a ressalva de que não há o cheiro do livro. Não tem jeito, para aqueles viciados em cheirar livros, o e-reader simplesmente não funciona: “[…] and now, as an adult, I love nothing more than curling up with a good book, closing my eyes, breathing in through my nostrils, keeping my eyes closed and not reading yet continuing to draw in oxygen for hours, and, thanks to my fetishized olfactory associations for printed and bound matter, becoming sexually aroused […] One of the most erotic experiences of my life remains book-sniffing, in a Bangkok hotel room, by myself, the Dutch translation of Crime and Punishment while rolling around on a bed of loose pages from Gravity’s Rainbow.”

III Encontro Nacional dos Blogueiros de Economia


A bacana iniciativa do Cristiano M. Costa e Cláudio Shikida terá sua terceira edição!

Dessa vez será na FUCAPE, em Vitória – ES, no dia 12 de Abril.

PS: o Análise Real estará presente em um dos painéis.

 

Estatística no Google


Jeff Leek do Simply Statistics trouxe uma entrevista bacana com Nick Chamandy, um estatístico do Google.

Destaque para a parte em que ele diz que, na maioria dos casos, o estatístico que trabalha no Google não é somente responsável por fazer as análises, mas também por coletar e tratar os dados brutos.

In the vast majority of cases, the statistician pulls his or her own data — this is an important part of the Google statistician culture. It is not purely a question of self-sufficiency. There is a strong belief that without becoming intimate with the raw data structure, and the many considerations involved in filtering, cleaning, and aggregating the data, the statistician can never truly hope to have a complete understanding of the data. For massive and complex data, there are sometimes as many subtleties in whittling down to the right data set as there are in choosing or implementing the right analysis procedure

Esta é uma reflexão importante, principalmente para os (macro)economistas, que dependem em grande medida de dados de terceiros e podem acabar não tendo intimidade com a produção dos dados e o grau de acurácia das medidas.

PS.: o Google realmente parece ser a empresa dos sonhos para quem quer conciliar teoria e prática. Além da entrevista acima, veja Hal Varian aplicando teoria dos jogos na prática aqui.

Estatística na União Soviética


É bastante comum ver argumentos que são contra a liberdade econômica e, ao mesmo tempo, a favor da liberdade acadêmica, artística, de imprensa e de expressão em geral. Confunde-se – propositadamente ou não – democratização da mídia com financiamento público de propaganda ideológica, ou liberdade de imprensa com imprensa “neutra” ou “politicamente correta” (no sentido fluído que essas palavras ganham em cada contexto em que seu interlocutor usa).

Entretanto, ao menos no limite, há uma contradição inerente a este tipo de raciocínio; pois, uma vez que caiba a um órgão central definir quem exerce o quê em cada campo da esfera econômica, isto também abrange a atividade de professores, pesquisadores, jornalistas e artistas.

Se o único jornal a ser permitido no país é um jornal estatal, qual o incentivo para que notícias desfavoráveis ao governo circulem? Se as únicas universidades permitidas no país são estatais, qual o incentivo para que linhas de pesquisa que não agradem ao governo prosperem? E assim por diante. Sim, é possível contra-argumentar este argumento, e depois contra-argumentar o seu contra-argumento, e este é um debate acalorado e interessante; mas não será desenvolvido neste post. A ideia era apenas fazer uma introdução para comentar sobre a situação da ciência estatística na União Soviética na época de Stalin.

A Rússia produziu grandes estatísticos matemáticos, como Kolmogorov e Slutsky (sim, ele também é o mesmo que você estudou em microeconomia). Todavia, conforme se lê em The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century, o regime comunista considerava que todas as ciências sociais eram, na verdade, ciências de classe, e  deveriam estar subordinadas ao planejamento central do partido. Para eles, a estatística era uma ciência social. E o conceito de “aleatório” ou “erro-padrão” era algo absurdo em uma economia planejada. Nas palavras de Salsburg (p.147-148):

A palavra russa para variável aleatória se traduz como “magnitude acidental”. Para planejadores centrais e teóricos, isso era um insulto […] nada poderia ocorrer por acaso. Magnitudes acidentais poderiam descrever coisas que ocorrem em economias capitalistas – não na Rússia. As aplicações da estatística matemática foram rapidamente reprimidas.

Como resultado os periódicos de estatística foram se extinguindo e os estatísticos matemáticos tiveram que, ou pesquisar assuntos estatísticos disfarçados com outros nomes, ou mudar de área. E enquanto os Estados Unidos utilizavam os desenvolvimentos dos teóricos russos na prática – como no controle de qualidade industrial – a Rússia teve que esperar algumas décadas, até o colapso da União Soviética, para ver o fruto de seus próprios cientistas aplicado à indústria.

Um economista termina com a namorada


Uma aplicação prática – e hilária – da maximização de utilidade. Tive que traduzir alguns trechos:

Os cálculos são bastante simples. Neste ponto da minha vida, o custo de oportunidade de sair com você é bastante elevado. Sexo com você me concede 17 unidades de prazer, mas eu derivo unidades negativas de prazer com a conchinha que vem logo depois […] eu também perco unidades de prazer quando você faz essa coisa estranha com as mãos que você acha que é algo carinhoso, mas parece que você está me arranhando […] enquanto isso, eu poderia estar fazendo muitas outras coisas em vez de gastar tempo com você. Por exemplo, eu poderia estar bebendo no bar irlandês com um grupo de amigos do trabalho. Eu derivo entre 20 e 28 unidades de prazer dando em cima de mulheres bêbadas e safadas no bar. […] no entanto, a maioria dessas mulheres não ri das minhas piadas, o que impulsiona para baixo as unidades de prazer adquiridas. Assim, eu consigo obter entre 14 e 21 unidades de prazer em uma noite no bar. [….] como todos os seres humanos, sei que sou falível e, já que tenho uma tendência natural para descontar indevidamente o futuro, fiz questão de determinar com precisão o valor presente dos custos e benefícios. Mas, mesmo considerando os retornos marginais decrescentes de dar em cima das mulheres bêbadas e safadas supracitadas, os números simplesmente não querem que fiquemos juntos.

Via Mankiw.

1.000.000 de números aleatórios


Um livro que você não pode deixar de ler – da primeira à última página. História imprevisível, do começo ao fim. Quatro estrelas, com alguns dos melhores reviews já produzidos na Amazon.

Destaque para:

40432 33289 53985 30223 99287 (p. 136)

Via Dave Giles.

A inflação na Argentina II


Primeiro, maquiam os índices de preço.Os trabalhadores percebem, passam a não acreditar na inflação oficial, e exigem a inflação do “carrinho de supermercado”. Solução genial e inédita na América Latina: congelam preços dos supermercados.

Comunidades tribais são mais violentas? O quão próxima é a distribuição normal? O papel do BNDES.


Alguns links aleatórios.

1) Não existe má publicidade 2 (o primeiro foi com relação ao livro do Sandel). Recém publicado livro do Jared Diamond (The World Until Yesterday: What Can We Learn from Traditional Societies?) parece ter provocado a ira (aqui e aqui) de grupos defensores das comunidades tribais. Resultado: comprei a versão para Kindle.

(Via Marginal Revolution)

2) Seguem alguns posts do Larry Wasserman que queria compartilhar há algum tempo, mas havia procrastinado:

Review do livro de Nassim Taleb, Antifragile: Things That Gain from Disorder, apenas lido pela metade (because only sissy fragilistas finish a book before reviewing it);

– Sobre bootstrapping I e II;

– Sobre teoremas de upper-bound para erros de aproximação pela curva normal (vale conferir uma sugestão que surgiu nos comentários do post, um texto histórico, bacana, sobre robustez do Stigler).

3) Sobre o papel do BNDES. Artigo de Maurício Canêdo Pinheiro, no Estadão, bota em xeque a efetividade da instituição. Como suporte, menciona o working paper do Lazzarini (What Do Development Banks Do? Evidence from Brazil, 2002-2009). Lembro-me de terem comentado bastante sobre esse artigo na última Anpec, e tenho de confessar que as conclusões do paper são bastante alinhadas com minhas crenças e intuições a priori. A despeito disso, com base em uma passada de olho, fiquei na dúvida se os dados apresentados corroboram conclusões fortes. Para não falar mais sem ler com o devido cuidado, isso fica para outro dia.

Sobre a acurácia das variáveis econômicas


Segundo as contas nacionais trimestrais do IBGE, o PIB brasileiro no terceiro trimestre de 2012, a preços constantes de 1995, foi de R$ 292.011.667.484,06. Isto resultou em uma variação real de 0,8652892558907% em relação ao mesmo período do ano anterior.

Qual a acurácia destes números? Ninguém em sã consciência acreditaria que os últimos seis centavos são exatos ou precisos. Poucos também apostariam grande soma com relação à exatidão dos quatrocentos e oitenta e quatro reais. É bem possível que existam erros na ordem dos milhões; e, quem sabe, dos bilhões. Mas não sabemos quanto.

Diferentemente de pesquisas eminentemente amostrais (como a PME, por exemplo), dados como o PIB, que envolvem a agregação de diversos valores, com metodologias bastante diferentes, não costumam ser acompanhados de uma medida quantitativa de erro. Isto ocorre porque são consultadas várias fontes de informação para se gerar a estimativa do PIB: governamentais, pesquisas de campo amostrais, pesquisas quase-censitárias, formulários administrativos, extrapolações, interpolações, entre outros instrumentos. Cada uma dessas fontes está sujeita a diversos vieses, erros amostrais e não-amostrais, sendo bastante difícil chegar a uma medida quantitativa da incerteza em relação ao número.

Antes que me entendam mal, vale ressaltar: não estou criticando o IBGE, que atualmente é respeitado nacionalmente e internacionalmente por seus dados, principalmente se compararmos com os dados da Argentina os dados de outros países.

A questão é que o erro existe e isso é natural. A mensuração é uma atividade fundamental na ciência*, mas junto de toda mensuração há incerteza, bem como um trade-off entre custo e acurácia. Definir o grau de exatidão e precisão (e que tipo de exatidão e precisão**) a se alcançar depende de saber tanto para quê o dado será utilizado, quanto o custo de torná-lo mais acurado. Além disso, uma vez coletado o dado, saber a incerteza presente no número é, às vezes, quase tão importante quanto saber o próprio número, posto que exercício fundamental para – como diria Morgenstern – podermos distinguir “entre o que achamos que sabemos e o que de fato sabemos ou o que de fato podemos saber” com esses dados .

Entretanto, ao se observar a mídia e, inclusive, trabalhos acadêmicos, a impressão que se tem é a de que muitos dos números econômicos divulgados não são vistos como estimativas, mas como valores reais, absolutos. Muitas vezes se toma o número pelo seu valor de face. E, para a ciência econômica, isso pode ser um grande problema.

Para não ficar em uma discussão etérea, vejamos alguns exemplos.

Primeiro – a Pesquisa Mensal de Emprego (PME), que divulga uma medida de erro. Este caso ilustra como esta medida pode ser importante para se interpretar o número. No boxe do relatório de inflação de dezembro de 2012, há uma discussão sobre a aparente contradição entre os cenários sugeridos pelos dados da PME e pelos dados do Caged para o mercado de trabalho. Um dos pontos relacionados no texto, para conciliar os cenários das duas pesquisas, é o erro amostral, que evidencia o cuidado que tem de ser tomado ao interpretar as variações mês a mês da PME. Por exemplo, em outubro de 2012, o coeficiente de variação da pesquisa foi de 0,7%; assim, uma variação nos dados, suponha, de 0,6%, é consistente tanto com um crescimento robusto do emprego (uma taxa anualizada de 7,8%), quanto com uma variação natural na amostra.

Segundo, um exemplo anedótico – o caso dos livros que pesam 0Kg. Este é um exemplo propositalmente absurdo e que, por isso mesmo, torna o problema da falta de informação sobre o erro auto-evidente. Suponha que, além dos livros em que a balança acusou o peso de 0Kg, tenhamos uma terceira medida com peso de 2Kg. Tomando os dados por seu valor de face, o peso total dos livros seria, aritmeticamente, 0Kg + 0Kg + 2Kg= 2Kg. O número final é manifestamente errado, pois não sabemos a ordem de grandeza que o instrumento de mensuração (a balança) consegue identificar. A partir do momento em que se sabe que a balança é errática para pesos menores do que 2Kg, você percebe que este dado não serve para distinguir entre um peso total de 2Kg e um peso total de 6Kg. Entretanto serviria caso você quisesse saber se os livros pesam menos do que 20Kg. Veja, estamos distinguindo “entre o que achamos que sabemos e o que de fato sabemos ou o que de fato podemos saber” com esses dados.

Terceiro, talvez um caso de erro proposital – os dados do Indec sugerem que o crescimento argentino, desde 2002, apresenta taxa de cerca de 7,7% ao ano. Este dado, entretanto, pode servir para julgar a eficácia das políticas econômicas dos hermanos? Alexandre Schwartsman sugere que não, mostrando inconsistência considerável entre os dados do PIB e os dados de geração de energia da Argentina. Inclusive, dados de preços coletados on-line sugerem que também os índices de preços oficiais parecem ter erro muito grande para qualquer inferência.

Os exemplos acima ilustram como os dados são matéria prima importante para a economia, e também mostram que ter uma medida do erro inerente a esses dados nos ajuda a entender o que eles podem e o que eles não podem responder. Com esta preocupação em mente, comecei a procurar trabalhos sobre o assunto, e tive contato com o livro de Morgenstern “On the accuracy of economics observations”. Este trabalho, cuja segunda e última revisão é de 1963, foi o único que encontrei que discute extensivamente os problemas inerentes a muitas variáveis (macro)econômicas (caso alguém tenha conhecimento de algo com este fôlego e mais recente, favor indicar).

O trabalho passa por discutir a natureza dos dados econômicos não experimentais, os diversos tipos de erro naturalmente esperados, e ainda trata de vários exemplos nas mais diversas áreas (comércio exterior, índices de preços, emprego, PIB). Como este post já esta enorme, vou apenas mencionar um exemplo de contas nacionais, trazido por Morgenstern.

Como dissemos no início do post, os valores publicados nas contas nacionais são daquele tipo de estatística em que uma medida de erro não tem uma fórmula pronta, sendo difícil quantificar a incerteza. Entretanto, Kuznets, à época, reuniu especialistas envolvidos no cálculo do PIB para tentar chegar a uma medida. Resultado: cerca de 10%. Qual a implicação disso? Veja o gráfico abaixo (p.269):

morgenstern

Morgenstern mostra os dados de renda nacional bruta dos EUA, de 1946 a 1961, com o intervalo de 10% de erro. Neste caso, nota-se que os dados servem para analisar o crescimento econômico de longo prazo, mas são bastante duvidosos quanto sua utilidade para se confrontar teorias de ciclos econômicos, pois além dos ciclos divulgados oficialmente (reta contínua do gráfico) outra trajetória, com ciclos opostos, também é consistente com o erro (reta tracejada do gráfico).

Com o avanço da tecnologia, é provável que os dados de hoje não sejam tão incertos quanto os da época. Mas não sabemos em que medida, e isso é fundamental para distinguirmos o que podemos extrair dos dados. Estamos em uma época em que o reconhecimento do erro, da aleatoriedade, e da incerteza está se tornando cada vez mais comum e, talvez, seja hora de tentar resgatar a linha de pesquisa de Morgenstern.

* pelo menos para aqueles que descem do pedestal criado para si em sua própria mente e buscam confrontar ideias, sempre sujeitas a erro, com o que se observa.

** por exemplo, suponha que você tenha dois métodos para medir uma variável, em um deles você sabe que há alta probabilidade de subestimar a medida e, com o outro, alta probabilidade de superestimá-la: qual é melhor?